

# Change is in the Air: Northeast U.S. Agriculture in a Changing Climate

#### **Art DeGaetano**

Professor, Earth and Atmospheric Science Director, Northeast Regional Climate Center









Cornell University

Hottest Year

## Annual Temperature Northeast U.S.







## **Annual Precipitation Northeast U.S.**







## Annual PDSI Northeast U.S.





Cornell University



PDSI

## **New York Winter Temperature**





## **New York Summer Temperature**







## **New York Frost-Free Season**







## Days with Snow Cover (NY)







## Very Cold Nights (PA)







## Very Hot Days (PA)



## **Extreme Precipitation (NY)**





## So What Does the FUTURE Hold ?



# Setting the Stage



## Days with Max $> 85^{\circ}$ F High Emissions







#### **A Holistic View of the Growing Season**





#### Days < 32° F May



## Last Spring - First Fall 32° F













## Precip 3 Weeks Prior to Last Frost







## **Implications for Agriculture**

✓ Despite extended season and warmer springs....will fields be workable?







#### **Apple Chill Accumulation**





## **Apple Phenology Dates**





#### Ithaca







## **Apple Blossom Freeze Risk**







## **Implications for Agriculture**

✓ Spring Freeze Risk does not appear to increase in the long term

✓ Some indication of increased risk in the short term



www.shutterstock.com = 625142207







## Modeled Dollar Spot Risk



## Summer RH High Emissions







## Summer RH High Emissions

Temper Summer Diseases that Depend on Leaf Wetness?







## 2040-2069













Cornell University

-10 -5 0 5 10 15 20 25 30 35



## Effective Agricultural Management in a Changing Climate

- ✓ Realize the climate is changing
- Recognize that many practices are really based on the historical climate
- Use all the data and info that are available to maximize the ability to adapt to the changing climate







# Rethink the convention of 30-years defining "normal" climate









## Throw Away the Calendar







## And Intuition Too









## Replace them with DATA













## And Data Driven Decision Tools



#### http://climatesmartfarming.org/ tools/csf-water-deficitcalculator/



#### http://newa.cornell.edu/index.php? page=apple-diseases



| Infection Events Summary          |      |      |          |                |      |          |            |           |
|-----------------------------------|------|------|----------|----------------|------|----------|------------|-----------|
|                                   | Past | Past | Current  | Ensuing 5 Days |      |          |            |           |
| Date                              | 5/3  | 5/4  | 5/5      | 5/6            | 5/7  | 5/8      | 5/9        | 5/10      |
| Infection Events                  | No   | No   | Combined | Yes            | No   | No       | No         | No        |
| Days to Symptoms                  |      |      |          | 9-10           |      |          | 1.1        |           |
| Average Temp (F)<br>for wet hours | -    | 37   | 60       | 63             | -    | 39       | 37         |           |
| Leaf Wetness<br>Estimate (hours)  | 0    | 2    | 10       | 9              | 0    | 6        | 3          | 0         |
| Hours ≥90% RH                     | 0    | 2    | 10       | 9              | 0    | 6        | 3          | 0         |
| Rain Amount                       | 0.00 | 0.00 | 1.25     | 0.02           | 0.00 | 0.00     | 0.00       | 0.00      |
|                                   |      |      |          |                |      | Download | Time: 5/11 | 2017 23:0 |



