Evaluación de vulnerabilidad de las llanuras meridionales y estrategias preliminares de adaptación y mitigación para agricultores, ganaderos y propietarios de tierras forestales

Autores: Jean L. Steiner, directora de laboratorio y jefa interina del Centro Climático de las Llanuras Meridionales; Jeanne M. Schneider, asesora de Weather Sense LLC, exjefa del Centro Climático de las Llanuras Meridionales; Clay Pope, asesor de CSP LLC; Sarah Pope, asesora de CSP LLC; Paulette Ford, Servicio Forestal de los EE. UU.; y Rachel F. Steele, coordinadora de los Centros Climáticos Nacionales, Washington D.C.

Centro Climático de las Llanuras Meridionales del USDA
Laboratorio de Investigación de Tierras de Pastoreo USDA-ARS
7207 West Cheyenne Street, El Reno, OK 73036

Octubre de 2015

Contribuyentes: Extendemos nuestro agradecimiento a Rafael Guerrero, NRCS; Juliet Bochicchio, RD; Wendy Hall y Marlene Cole, APHIS; Sharon Hestvik, RMA; Adrian Polansky, FSA; Michele Schoeneberger y Gary Bentrup, Centro Nacional de Agrosilvicultura (Servicio Forestal); David Meriwether, Steve McNulty, y Priya Shahani, Servicio Forestal. Nuestro reconocimiento a ICF International por sus aportes al perfil de gases de efecto invernadero.

Editado por: Terry Anderson, ARS

Índice

Carta de la jefa regional.. 4

1. Introducción.. 5
 1.1 Descripción de la región y de los recursos clave... 5
 1.2 Datos demográficos y usos de la tierra.. 8
 1.3 Condiciones climáticas generales, extremos climáticos y efectos pasados.. 9
 1.4 Resumen de los escenarios climáticos regionales según la NCA.. 10

2 Sensibilidades agrícolas regionales al cambio climático y estrategias de adaptación................................. 15
 2.1 Descripción general de los sistemas de cultivo respecto de los riesgos, las vulnerabilidades
 y las estrategias generales de adaptación... 15
 Descripción general de los sistemas de cultivo... 15
 Abastecimiento de agua... 17
 Trigo.. 19
 Algodón.. 21
 Sorgo... 23
 Maíz.. 24
 Soja... 25
 Horticultura... 26

2.2 Descripción general de los sistemas de ganadería respecto de los riesgos, las vulnerabilidades
y las estrategias generales de adaptación.. 28
 Producción de ganado bovino de carne y sistemas de pastoreo asociados... 28
 Producción animal intensiva... 28
 Ganado bovino de carne... 29
 Tierras de pastoreo... 31
 Aves de corral y huevos... 32
 Ganado porcino.. 33
 Ganado lechero... 34

3 Sensibilidades forestales regionales al cambio climático y estrategias de adaptación................................. 35
 3.1 Bosques naturales de las llanuras meridionales.. 35
 Amenazas.. 36
 3.2 Tierras forestales nacionales... 36
 Agrosilvicultura.. 38
4 Perfil de emisiones de gases de efecto invernadero (GEI) proveniente de la agricultura y los bosques dentro de la región, y oportunidades de mitigación

4.1 Cambios en las existencias de carbono en el suelo

4.2 Emisiones de óxido nitroso

4.3 Perfil de GEI proveniente del ganado
 Fermentación entérica
 Emisiones de sistemas de aprovechamiento del estiércol

4.4 Existencias de carbono forestal y cambios en las existencias

4.5 Oportunidades de mitigación
 Suelos agrícolas
 Retiro de tierras
 Aprovechamiento del estiércol
 Fermentación entérica

5 Programas del USDA

5.1 Servicio de Conservación de Recursos Naturales
 Las actividades más vulnerables al clima
 Programas para abordar los riesgos y las vulnerabilidades

5.2 Servicio Forestal de los Estados Unidos
 Características
 Programas para abordar los riesgos y las vulnerabilidades

5.3 Agencia de Servicio Agrícola
 Las actividades más vulnerables al cambio climático
 Programas para abordar los riesgos y las vulnerabilidades

5.4 Desarrollo rural
 Servicio de Vivienda Rural
 Servicio de Negocios y Cooperativas Rurales
 Servicios Públicos Rurales

5.5 Agencia de Gestión de Riesgos
 Vulnerabilidades en las llanuras meridionales

5.6 Servicio de Inspección Sanitaria Animal y Vegetal
 Cuidado de Animales (AC)
 Servicios de Regulación de la Biotecnología (BRS)
 Protección y Cuarentena de Plantas (PPQ)
 Servicios Veterinarios (VS)
 Desarrollo de Políticas y Programas (PPD)
 Servicios de Fauna Silvestre (WS)

Referencias
Carta de la jefa regional

Entre los puntos de debate y discusión en torno al cambio climático y a los efectos asociados en la agricultura en la región de las llanuras meridionales, se suele pasar por alto un aspecto crítico: la creciente variabilidad del clima de un día a otro. Las amplias variaciones en el clima han sido un aspecto común de la vida y la agricultura de las Grandes Llanuras del sur desde antes de la formación de los estados de Kansas, Oklahoma y Texas. El manejo exitoso de las sequías y del clima extremo ha sido un motivo de orgullo para los productores agrícolas de la región.

Sin embargo, el cambio ha llegado, y no es clemente con la agricultura. Durante los últimos 15 años, la región ha sufrido algunos de los eventos más extremos para la agricultura con una frecuencia cada vez mayor, como resultado directo de un comportamiento atmosférico más dinámico. Ha atravesado amplios periodos de sequía paralizadora que finalizaron con un récord de diluvios e inundaciones. Además, los sistemas agrícolas se enfrentan al desafío de eventos inesperados que ocurren «fuera de estación», como heladas severas hacia fines de la primavera, olas de frío que se alternan con períodos cortos de calor a lo largo del verano y del invierno, y precipitaciones que superan los índices históricos cuando finalmente llueve. La predictibilidad del clima se encuentra en su punto más bajo en comparación con los últimos 30 años del siglo XX. Estos eventos climáticos contribuyen a los cambios en la temperatura promedio y en las precipitaciones promedio que se relacionan con el cambio climático, pero es el clima de un día al otro el que determina el éxito de cada emprendimiento agrícola. Generalmente se puede observar que no son los promedios los que paralizan la agricultura en esta zona... es la variabilidad. La región enfrenta una situación en la que no hay patrones estacionales confiables para las precipitaciones o la temperatura, patrones que funcionaron como pilares de la orientación agronómica existente. Nuestros sistemas agrícolas se encuentran bajo constante presión, lo cual supone un mayor riesgo para todos nuestros emprendimientos.

Además, con base en todos nuestros conocimientos de física y dinámica de fluidos de nuestro sistema terrestre-oceánico-atmosférico, se estima que esta variabilidad continuará y posiblemente empeorará.

Conociendo esta situación, es crucial que el Centro Climático de las Llanuras Meridionales facilite y apoye el desarrollo de opciones de gestión agrícola que sean resilientes y productivas en condiciones climáticas cada vez más variables. Desarrollar estas nuevas opciones es todo un desafío, pero no es imposible. Nos complace que este sea el Año Internacional de los Suelos, porque una mejor gestión de la salud del suelo es una de las principales oportunidades para la adaptación de la agricultura a un clima más variable y al clima cambiantes de las Grandes Llanuras del sur. Ya se está experimentando con alternativas y se están realizando esfuerzos para comprender mejor nuestras oportunidades para mitigar el avance del cambio climático mediante la gestión agronómica. Esperamos acelerar el proceso, coordinar o colaborar con la información de los esfuerzos, y proporcionar, a medida que se desarrollan, los resultados que sean de utilidad para los productores de esta región que abarca tres estados.

Jean L. Steiner

Directora del Centro Climático de las Llanuras Meridionales
1. Introducción

La región de las llanuras meridionales contribuye de manera significativa a la producción nacional de trigo y carne. El trigo de invierno es el principal cultivo anual, y gran parte de este tiene doble uso, para forraje anual de estación fría y para producción de granos. El ganado se cría en amplios pastizales y praderas de toda la región.

La producción y la renta agrícola de las llanuras meridionales son sensibles a la variabilidad del clima. Por ejemplo, la severa sequía de 2010/2011 tuvo como resultado una pérdida de miles de millones de dólares en el sector agrícola. Se estima que las pérdidas agrícolas superaron los $1700 millones en Oklahoma y los $5200 millones en Texas; más de la mitad de las pérdidas de Texas se atribuyeron a empresas de ganadería y de heno. Entre los eventos relacionados con el clima y las condiciones meteorológicas en esta región podemos mencionar los siguientes ejemplos:

- **Sequía**: solamente en 2011, la sequía tuvo como resultado pérdidas agrícolas directas de $12 000 millones en la región (Kunkel et al., 2013). Mientras que las lluvias de 2012 y 2013 trajeron un gran alivio en muchas zonas, en otros lugares, como el sudoeste de Oklahoma, la sequía persistió hasta 2015, año en que finalizó con un récord de precipitaciones. La búsqueda continúa para adaptarse, sobrevivir y tener éxito a pesar de las condiciones del tiempo.

- **Cambios de temperatura**: otro cambio que abarca toda la región son las bajas temperaturas nocturnas, especialmente en el invierno, durante varios días cálidos consecutivos. Las temperaturas mínimas promedio durante el invierno ahora son significativamente más cálidas que las mínimas del periodo de 1960 a 1990, o incluso de 1970 a 2000. Este es otro de los aspectos del cambio climático que se estima que continuará y empeorará. Algunos efectos en los cultivos de invierno son la vernalización insuficiente para algunas variedades de trigo de invierno y la mayor vulnerabilidad de los cultivos de invierno a las heladas severas de fines de la primavera. En general, la productividad de los cultivos de invierno se ha vuelto menos confiable, especialmente cuando se ve exacerbada por la sequía.

- **Plagas y enfermedades**: las temperaturas más cálidas han causado que los insectos, la maleza y las enfermedades de las plantas se trasladen al norte y a tierras más elevadas, o que sobrevivan al invierno, que antes lograba mantenerlos a raya. Aunque algunas plagas y especies o cepas de patógenos aumentan a causa del cambio climático y otras disminuyen, en general se espera que la presión de plagas, maleza y enfermedades sobre los cultivos continúe y se intensifique.

1.1 Descripción de la región y de los recursos clave

El Centro Climático de las Llanuras Meridionales del USDA (Figura 1) incluye una amplia cobertura de tierras de pastoreo, tierras de cultivo y tierras forestales (Servicio Geológico de los EE. UU., 2011). El valor de la producción agrícola en las regiones de las llanuras meridionales superó los $59 000 millones en el censo agrícola de 2012 (Tabla 1); el ganado aportó el 58 % de las ventas agrícolas totales. Entre los productos básicos de cultivo y de ganadería que superaron los $1000 millones en la región de los tres
Región de las llanuras

Estados se incluyen el trigo, el maíz, los cultivos hortícolas, el algodón, el heno y los forrajes, el sorgo, la soja, el ganado bovino de carne, las aves de corral y los huevos, el ganado lechero y el ganado porcino (Tabla 1). La región de las llanuras meridionales contribuye en forma significativa a la producción nacional de trigo y carne. El trigo de invierno es el principal cultivo de secano anual y gran parte de este tiene doble uso, para forraje anual de estación fría y para producción de granos.

El ganado se cria en pastizales y praderas de toda la región. El maíz es el principal cultivo por irrigación en la región del acuífero de Ogallala de las llanuras elevadas de Kansas, Oklahoma y Texas.

Los cultivos hortícolas y el algodón adquieren cada vez más importancia en la porción sur de la región, y el maíz y la soja son más importantes en la parte norte de la región. Los suelos de pradera que se encuentran en la región sur de las Grandes Llanuras incluyen molisoles, que se formaron como resultado de una prolongada acumulación de material de plantas y que tienen un alto contenido de materia orgánica. Se caracterizan por tener un horizonte superficial grueso y oscuro, y una elevada (>50 %) saturación de base. Los molisoles generalmente sustentan pastos o vegetación de pradera en climas que tienen deficiencias moderadas a pronunciadas de humedad estacional, en una amplia gama de regímenes de temperaturas. La topografía típica asociada con los molisoles es plana o ligeramente ondulada a ondulada (Ojima et al., 2015).

En las porciones más húmedas de las llanuras meridionales, los suelos son en su mayoría alfisoles, que se desarrollan en ambientes con mayor nivel de precipitaciones. Han sufrido una lixiviación moderada, y tienen acumulación de arcilla debajo de la superficie y una saturación de base superior al 35 %. Estos suelos generalmente están ocupados por bosques, sabanas y praderas abiertas. Al momento de los asentamientos europeos en las

Tabla 1: Valor de producción de los principales productos básicos de cultivo y ganadería en las llanuras meridionales. Fuente: (Servicio Nacional de Estadísticas Agropecuarias, 2014).

<table>
<thead>
<tr>
<th>Producto básico</th>
<th>Kansas</th>
<th>Oklahoma</th>
<th>Texas</th>
<th>Llanuras meridionales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivos</td>
<td>6984</td>
<td>1876</td>
<td>7367</td>
<td>16 227</td>
</tr>
<tr>
<td>Trigo</td>
<td>2474</td>
<td>946</td>
<td>618</td>
<td>4038</td>
</tr>
<tr>
<td>Maíz</td>
<td>2297</td>
<td>203</td>
<td>1454</td>
<td>3954</td>
</tr>
<tr>
<td>Horticultura1</td>
<td>93</td>
<td>268</td>
<td>1738</td>
<td>210</td>
</tr>
<tr>
<td>Algodón</td>
<td>52</td>
<td>1619</td>
<td></td>
<td>1671</td>
</tr>
<tr>
<td>Heno</td>
<td>359</td>
<td>271</td>
<td>958</td>
<td></td>
</tr>
<tr>
<td>Sorgo</td>
<td>579</td>
<td>34</td>
<td>743</td>
<td>1356</td>
</tr>
<tr>
<td>Soja</td>
<td>1102</td>
<td>48</td>
<td>37</td>
<td>1187</td>
</tr>
<tr>
<td>Ganado bovino de carne</td>
<td>10 153</td>
<td>3403</td>
<td>13 013</td>
<td>26 569</td>
</tr>
<tr>
<td>Aves de corral, huevos</td>
<td>88</td>
<td>961</td>
<td>2325</td>
<td>3374</td>
</tr>
<tr>
<td>Ganado lechero</td>
<td>482</td>
<td>164</td>
<td>1698</td>
<td>2344</td>
</tr>
<tr>
<td>Ganado porcino</td>
<td>697</td>
<td>656</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>Agricultura total</td>
<td>18 461</td>
<td>7130</td>
<td>25 376</td>
<td>59 966</td>
</tr>
</tbody>
</table>

1 Incluye vegetales, frutas, nueces, viveros, invernaderos, floricultura y césped.

Tabla 2: Granjas y agricultores en las llanuras meridionales. Fuente: (Servicio Nacional de Estadísticas Agropecuarias, 2014).

<table>
<thead>
<tr>
<th></th>
<th>Kansas</th>
<th>Oklahoma</th>
<th>Texas</th>
<th>Llanuras Meridionales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granjas, n</td>
<td>61 773</td>
<td>80 245</td>
<td>248 809</td>
<td>390 827</td>
</tr>
<tr>
<td>Tenencia1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propietario total, n</td>
<td>35 465</td>
<td>51 605</td>
<td>179 783</td>
<td>266 853</td>
</tr>
<tr>
<td>Propietario parcial, n</td>
<td>21 564</td>
<td>23 702</td>
<td>54 297</td>
<td>99 563</td>
</tr>
<tr>
<td>Arrendatario, n</td>
<td>4744</td>
<td>4938</td>
<td>14 729</td>
<td>24 411</td>
</tr>
<tr>
<td>Irrigación en acres (hectáreas)</td>
<td>2 881 292 (1 166 017)</td>
<td>479 750 (194 147)</td>
<td>4 489 169 (1 816 702)</td>
<td>7 850 211 (3 176 867)</td>
</tr>
<tr>
<td>Agricultores, n</td>
<td>92 892</td>
<td>121 603</td>
<td>375 888</td>
<td>590 383</td>
</tr>
<tr>
<td>Ocupación principal agricultura, %</td>
<td>32</td>
<td>28</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>Mujeres, n</td>
<td>26 096</td>
<td>39 216</td>
<td>122 478</td>
<td>187 790</td>
</tr>
<tr>
<td>Latinos, n</td>
<td>990</td>
<td>1749</td>
<td>32 264</td>
<td>35 003</td>
</tr>
<tr>
<td>Negros, n</td>
<td>228</td>
<td>1784</td>
<td>11 719</td>
<td>13 310</td>
</tr>
<tr>
<td>Pueblos originarios, n</td>
<td>594</td>
<td>11 536</td>
<td>3820</td>
<td>15 950</td>
</tr>
<tr>
<td>Asiáticos, n</td>
<td>120</td>
<td>483</td>
<td>1226</td>
<td>1829</td>
</tr>
</tbody>
</table>

1 Tenencia del agricultor principal

Introducción
Página | 6
Región de las llanuras

Grandes Llanuras del sur, las plantas leñosas estaban ampliamente restringidas a zonas ribereñas o zonas profundamente divididas en las que raramente se producían incendios. Sin embargo, a comienzos del siglo XX, la invasión de plantas leñosas en áreas que tradicionalmente habían sido de pastoreo se convirtió en un importante problema de gestión de la tierra que continúa ocurriendo a un ritmo acelerado. Se forestaron las porciones orientales de la región con una combinación de maderas nobles en el este de Kansas, y una combinación de maderas nobles y pinos a lo largo del este de Oklahoma y Texas.
1.2 Datos demográficos y usos de la tierra

El censo agrícola de 2012 indica que la región de las llanuras meridionales cuenta con 390 827 granjas y con 590 383 agricultores (Tabla 2). Desde el censo agrícola de 2007, la cantidad de granjas y de agricultores disminuyó en Kansas y Oklahoma, mientras que aumentó ligeramente en Texas, principalmente en la región este de Texas. La mayoría de las granjas de la región son operadas por propietarios totales o parciales de la tierra, pero solo aproximadamente el 29 % de los agricultores considera la agricultura como su ocupación principal. Alrededor del 32 % de todos los agricultores son mujeres, y más del 11 % se identifica como minoría. Los productores que conforman la mayor minoría son los agricultores de origen hispano y latino, principalmente en Texas. La mayoría de los miembros de pueblos originarios en la región son de Oklahoma.

La Figura 2 ilustra la distribución de granjas en los Estados Unidos, con la mayor concentración de granjas en la región central del país (es decir, las llanuras septentrionales, las llanuras meridionales y el Medio Oeste).
Las tierras forestales son el principal uso de tierras en la mitad oriental de los Estados Unidos y en la región noroeste del Pacífico. Las tierras de pastoreo y de cultivo representan los usos mayoritarios en la región oeste, las llanuras septentrionales, las llanuras meridionales y en la región del Medio Oeste (Figura 3).

Muchos condados rurales en las Grandes Llanuras, incluidas las llanuras meridionales, han presentado una prolongada trayectoria descendente de reducción de la población (Figura 4). Muchos de estos condados están perdiendo la infraestructura necesaria para sostener una agricultura saludable y unas comunidades rurales saludables. La falta de recursos en la comunidad aumenta la vulnerabilidad de muchos de estos residentes rurales a los factores de perturbación climática. Los condados que muestran un aumento de la población son urbanos en gran medida, o áreas con un aumento rápido en los sectores energéticos. Esto conduce a un crecimiento veloz de las poblaciones, grandes cantidades de personas que migran al área con pocas conexiones sociales, y un nivel limitado de vivienda, transporte e infraestructura necesaria para sostener la creciente población. Varios condados de Oklahoma y Texas han presentado una pobreza persistente en las décadas recientes (Figura 5), y por esta razón constituyen algunos de los condados más vulnerables a los desastres naturales, que incluyen las perturbaciones relacionadas con el clima.

1.3 Condiciones climáticas generales, extremos climáticos y efectos pasados

El sector agrícola ya está presentando los efectos de un clima cambiante. Las estaciones de cultivo son más largas, la sequía es más prevalente y los eventos climáticos extremos están afectando las operaciones...
Región de las llanuras

agricolas. Como los cultivos y los ambientes difieren ampliamente en las distintas regiones de este país, las vulnerabilidades se describen por región. El cambio climático ya está teniendo grandes repercusiones en el pueblo estadounidense. Ciertos tipos de eventos climáticos extremos relacionados con el cambio climático se han vuelto más frecuentes e intensos, e incluyen largos periodos de calor, lluvias intensas y, en ciertas regiones, inundaciones y sequías. El cambio climático presenta un desafío importante para la agricultura de los EE. UU. debido a que los sistemas agrícolas dependen ampliamente del clima. Los aumentos de temperatura tienen diversos efectos en los cultivos agrícolas y en todos los organismos biológicos, como se resume en Hatfield y Prueger (2015). El cambio climático tiene el potencial para afectar, tanto en forma positiva como en forma negativa, la ubicación, el tiempo y la productividad de los sistemas de cultivo, ganadería y pesca a escala local, nacional y mundial.

En Estados Unidos se producen casi $330 000 millones al año en productos básicos agrícolas. La productividad de los productos básicos agrícolas de EE. UU. es vulnerable a los efectos directos que tienen sobre el cultivo y el ganado las condiciones climáticas cambiantes y los eventos climáticos extremos, y a los efectos indirectos por la mayor presión de plagas y patógenos. El cambio climático también alterará la estabilidad de los suministros alimenticios y creará nuevos desafíos para la seguridad alimentaria en los Estados Unidos mientras el mundo busca poder alimentar a nueve millones de personas para el año 2050. Aunque el sector agrícola ha demostrado poder adaptarse a una amplia gama de perturbaciones, como lo evidencia el crecimiento continuo de la producción y la eficiencia en los Estados Unidos, el cambio climático presenta un nuevo conjunto de desafíos. Los estados de las llanuras meridionales presentan un alto nivel de eventos extremos (Figura 6), que incluyen vientos de altas velocidades, granizo y tornados.

1.4 Resumen de los escenarios climáticos regionales según la NCA

Los escenarios se definen como “descripciones cuantitativas y narrativas de condiciones futuras plausibles que brindan suposiciones para análisis de los posibles efectos y respuestas al cambio climático” (Kunkel et al., 2013). El objetivo de los escenarios regionales que se presentan a continuación es ayudar a comprender cuáles podrían ser las condiciones futuras; se desarrollaron usando una amplia gama de suposiciones acerca del crecimiento poblacional, el desarrollo económico, la evolución de la tecnología y las decisiones acerca de la protección ambiental (Melillo et al., 2014).

El clima de las llanuras meridionales se caracteriza por gradientes (Figura 7) y por la variabilidad en múltiples escalas. Como se ilustra en el gráfico de la portada de este informe, durante el período de registro ha habido una gran variabilidad interanual superpuesta en ciclos de varios años de períodos más húmedos y más secos. Este patrón, ilustrado para Oklahoma, es característico de las llanuras meridionales. Además, la temperatura promedio anual (Figura 8) muestra una similar variabilidad interanual elevada y
Región de las llanuras

periodo de varios años más cálidos y más fríos que generalmente se corresponden con períodos húmedos y fríos, y períodos secos y cálidos. A diferencia de las precipitaciones, que no muestran ninguna trayectoria ascendente o descendente en las décadas recientes, la temperatura anual promedio ha mostrado una tendencia de temperaturas más cálidas en áreas húmedas y en áreas secas.

Figura 7: Gradientes a lo largo de las llanuras meridionales según los ilustran los mapas de promedios anuales de precipitación, temperatura, temperatura del punto de rocío (las bajas temperaturas indican una menor humedad) y elevación digital. Fuente: PRISM.

Temperatura

Las temperaturas anuales de las Grandes Llanuras durante los últimos 20 años han sido más elevadas que los promedios para todas las estaciones entre 1901 y 1960. Las llanuras meridionales generalmente son más cálidas y húmedas durante el verano debido a un sistema de presión alta permanente en el Atlántico subtropical, que envía aire cálido y húmedo del océano (Kunkel et al., 2013).

Desde principios del siglo XX, la duración de la estación sin heladas ha estado aumentando (ver Figura 9), y la última temperatura de 32 °F durante la primavera ocurrió antes de lo normal, mientras que la primera ocurrencia durante el otoño se dio más tarde en el año (Kunkel et al., 2013). La Tabla 3 proporciona las tendencias de aumento/anomalías de la temperatura en las llanuras meridionales para el periodo comprendido entre 1895 y 2011. La anomalía más importante se dio durante el invierno, con un aumento de 0,14 °F/década (Kunkel et al., 2013).

Precipitaciones

Las precipitaciones anuales para las Grandes Llanuras durante la década de 1990 superaron el promedio de 1901 a 1960, fueron inferiores al promedio a principios de la década de 2000, y (con excepción del año 2012) fueron superiores al promedio en años recientes. Las décadas más secas en las Grandes Llanuras fueron la década de 1950 y la de 1930, siendo 1956 el año más seco que se haya registrado (Kunkel et al., 2013). La variabilidad en las precipitaciones es mayor en la parte sur de las Grandes Llanuras, en comparación con la de la región norte.

De acuerdo con el Índice de Gravedad de la Sequía de Palmer, que es un indicador de humedad del suelo, la sequía de 2011 en las llanuras meridionales fue el evento de sequía en el área de mayor intensidad en los registros desde 1895 (ver Figura 10). En Texas y Oklahoma, el verano de 2011 fue el más cálido que se haya registrado. En Texas, el verano de 2011 también fue el más seco, mientras que en Oklahoma fue el segundo más seco. Las pérdidas de esta sequía se estimaron en $12 000 millones, con 95 decesos (Kunkel et al., 2013). Usando los anillos de los árboles como indicadores de la sequía, la sequía del año 2011 en Texas fue la peor sequía, y la de la década de 1950 fue la sequía más prolongada en los últimos 429 años (Kunkel et al., 2013).

1 Una anomalía en la temperatura es una desviación respecto de un valor de referencia a lo largo de un promedio a largo plazo. Las anomalías positivas demuestran que la temperatura observada fue más cálida que el valor de referencia, y las anomalías negativas indican que las temperaturas observadas fueron más frías que el valor de referencia (Administración Nacional Oceánica y Atmosférica, 2015b).

2 Para consultar los datos comparativos a nivel estatal de análisis de tendencias climáticas estacionales o anuales de los conjuntos de datos de temperaturas y precipitaciones mensuales y anuales del Centro Nacional de Datos Climáticos, ver http://charts.srcc.lsu.edu/trends/.
Los extremos de calor o frío han caracterizado históricamente a las Grandes Llanuras. Sin embargo, ha habido una tendencia general hacia períodos de calor con extremos más cálidos y períodos de frío más cálidos en el último siglo (Figura 10). Desde 1990, se observaron eventos de precipitaciones más extremos, con el mayor diluvio en un mismo día en 2007 (Kunkel et al., 2013) (Figura 11). Las lluvias históricas en Texas y Oklahoma en mayo de 2015 (Crouch, 2015) acabaron con la sequía persistente que comenzó en 2010 (Texas) y en 2011 (Oklahoma), pero las tormentas que acabaron con la sequía en Oklahoma provocaron más...
de 60 tornados, inundaciones catastróficas y 11 decesos (Oklahoma Mesonet, 2015). La ciudad de Oklahoma recibió 19,48 pulgadas (494 mm) de lluvia en mayo de 2015, la mayor precipitación jamás registrada en un único mes para esa estación. El número más elevado de olas de calor desde la década de 1930 ocurrió en 1954 y en 2012. Las tendencias en las cantidades de nevadas demuestran una disminución, particularmente en la región este de las llanuras meridionales (Kunkel et al., 2013). Las llanuras meridionales generalmente reciben el nombre de “callejón de los tornados” debido a la frecuencia de tornados en el área (es decir, más de 100 al año en promedio en Texas y más de 50 al año en Kansas y Oklahoma). Durante el período de 1895 a 2011, los eventos de precipitaciones extremas en las Grandes Llanuras demostraron una importante variabilidad interanual y a escala de décadas, con una tendencia general ascendente (Figura 11). La cantidad de años desde 1990 con un elevado número de eventos extremos es superior a la de los datos de los 20 años anteriores (Kunkel et al., 2013).

Cambios anticipados
Ha habido una pérdida de los patrones de precipitaciones estacionales en la región, por lo que cada año el patrón de lluvias es diferente. Cuando llueve en la región, tiende a suceder en forma de grandes tormentas que producen erosión e inundaciones repentinas. En vez de lluvias ligeras que recargan en forma útil la humedad del suelo para los cultivos. En las llanuras meridionales, se prevé que las temperaturas elevadas ocurrirán con una frecuencia mucho mayor, y se estima que los días de más de 100 ºF se cuadruplicarán para la mitad del siglo. Se esperan aumentos similares en las llanuras meridionales en la cantidad de noches con temperaturas mínimas superiores a 80 ºF. Estos aumentos del calor extremo tendrán muchas consecuencias negativas, incluidos los aumentos en la evaporación del agua superficial y el estrés calórico; además, anularán los beneficios asociados con los inviernos más cálidos, como la estaciones de cultivo más largas. También se esperan más poblaciones de insectos que hibernan, aunque no hay suficientes datos para predecir las respuestas específicas para los patógenos y las especies de plagas específicas. Se prevé que grandes porciones de Oklahoma y Texas presentarán periodos secos más prolongados (hasta 5 días más de promedio para mediados de este siglo). A continuación se proporciona un resumen de las vulnerabilidades regionales y los cambios esperados en las llanuras meridionales (Kunkel et al., 2013):

- **Aumento de inundaciones/precipitaciones intensas**: huracanes e inundaciones costeras. Inundaciones repentinhas asocidades con tormentas intensas.
- **Aumento de la frecuencia y la intensidad de las sequías**: la sequía tuvo como resultado pérdidas agrícolas directas por un valor de $5200 millones en agosto de 2011 en Texas (Administración Nacional Oceánica y Atmosférica, 2015a).
- **Cambios de temperatura**: las temperaturas mínimas promedio durante el invierno ahora son significativamente más cálidas que las mínimas de los períodos de 1960 a 1990, y de 1970 a 2000.
- **Intensificación de los brotes de enfermedades, plagas y malezas**: con temperaturas más cálidas, los insectos, la maleza y las enfermedades de las plantas se han trasladado al norte y a tierras más elevadas, o sobreviven al invierno.
- **Mayor frecuencia de incendios**: la sequía está asociada con un alto riesgo de incendios de hierba y maleza, exacerbado por una invasión de malezas leñosas en las tierras de pastoreo y una fragmentación del paisaje relacionada con el aumento de la población periurbana.\(^3\)
- **Aumento de los eventos climáticos extremos**: esta región es propensa a tornados, tormentas eléctricas, granizo, hielo, olas de calor, temporales y otros eventos climáticos dañinos.
- **Vulnerabilidades adicionales esperadas**: efectos de aumento del nivel del mar a lo largo de la costa del Golfo de Texas. Las combinaciones de temperaturas elevadas, bajo nivel de humedad y vientos de altas velocidades tienen como resultado una demanda evaporativa muy elevada.

\(^3\)La periurbanización se relaciona con el proceso de crecimiento urbano disperso que crea paisajes híbridos con características urbanas y rurales fragmentadas (Organización de las Naciones Unidas para la Alimentación y la Agricultura, 2002).
2 Sensibilidades agrícolas regionales al cambio climático y estrategias de adaptación

Los sistemas agrícolas en las llanuras meridionales varían de este a oeste, impulsados en gran medida por gradientes de precipitaciones que van desde alrededor de 4,9 pies (1,49 metros) de precipitaciones anuales en el este a menos de 0,66 pies (0,2 metros) de precipitaciones anuales en el oeste. Las regiones irrigadas significativas son importantes para sostener la agricultura altamente productiva y diversa. La agricultura en las llanuras meridionales de los Estados Unidos enfrentará una presión continua a causa de los efectos del cambio climático. Los desafíos más apremiantes son los que enfrenta la industria en relación con el aumento de la frecuencia, la duración y la gravedad de las sequías, como así también los efectos negativos relacionados con el aumento de inundaciones repentinas como resultado de eventos de lluvia intensa.

La capacidad de los sistemas de producción agrícola para resistir a pesar del aumento de la variabilidad de los eventos meteorológicos como resultado del cambio climático, tanto en el mantenimiento de la producción de cultivos como en la proporción de forraje y agua adecuados para el ganado, es crucial para el futuro de esta región. El aumento de la presión de pastoreo en respuesta al deseo de maximizar las ganancias durante las épocas de sequía también empeora estos problemas. Las llanuras meridionales siempre se han enfrentado a desafíos como la variabilidad de las tasas y el momento de las precipitaciones para mantener la producción agrícola. El cambio climático aumenta la exposición de las llanuras meridionales a estos desafíos. Como resultado del cambio climático, se espera que aumenten factores como la reducción en la producción de cultivos; el agua inadecuada para el ganado, tanto para el consumo como para la producción de forraje; y el potencial de aumento de la erosión eólica e hídrica del suelo.

El flujo intermitente de nuestros ríos, riachuelos y arroyos también se verá afectado por una reducción de las lluvias y la falta de humedad del subsuelo, y por sus efectos en el ciclo hidrológico, que afectarán tanto a la agricultura como al abastecimiento municipal de agua.

En las llanuras meridionales siempre ha habido eventos de lluvias violentas. Los cambios en el clima que hemos estado viviendo han tenido como resultado un aumento de la posibilidad de eventos de lluvia aún más extremos que los que normalmente ocurrirían en el pasado. El aumento de erosión laminar, erosión por abarrancamiento y erosión en regueros debido a las intensas precipitaciones en tierras expuestas es una de las principales preocupaciones. Además, el riesgo de inundaciones repentinas y sus efectos en la propiedad, la infraestructura y la vida humana aumenta debido a las condiciones climáticas continuas. Los eventos de lluvias intensas también presentan desafíos adicionales relacionados con un aumento de la escorrentía de las tierras agrícolas y con el potencial aumento de los niveles de turbidez, nutrientes y bacterias en forma de contaminación de fuentes no localizadas en la superficie del agua.

La producción agrícola sufrirá una presión adicional proveniente de factores como heladas fuera de temporada en el trigo de invierno; aumento de la exposición a especies invasoras y plagas; muerte de cultivos de verano, como el grano de sorgo, a causa de heladas tardías; y cambios en los patrones de lluvias que reducen la confiabilidad de las precipitaciones en los meses de primavera y verano.

2.1 Descripción general de los sistemas de cultivo respecto de los riesgos, las vulnerabilidades y las estrategias generales de adaptación

Descripción general de los sistemas de cultivo

Cultivos de secano

El trigo, el algodón y el sorgo son importantes cultivos de secano en gran parte de las llanuras meridionales. En la región más húmeda del este, el maíz y la soja son importantes. Otros cultivos incluyen el girasol, la colza, el maní y una amplia variedad de cultivos de heno. Todos los cultivos de secano se ven afectados ampliamente por la sequía. Los suelos de las tierras de cultivo generalmente presentan un agotamiento de materia orgánica y están sometidos a la erosión eólica e hídrica. En años recientes, las heladas tardías han causado amplias pérdidas de trigo en Kansas y Oklahoma, y también cultivos de verano perturbados por olas de calor extremas en toda la región.
Cultivos irrigados

El acuífero de Ogallala sostiene una vital agricultura por irrigación en la región oeste de Kansas, y las franjas salientes de Oklahoma y Texas. El maíz y otros cereales para pienso han sido importantes cultivos irrigados, y el cultivo por irrigación ha fomentado ampliamente la producción animal intensiva en esta región. Además, la región tiene una industria bioenergética y los sectores de cultivo, energía y corrales de engorde están fuertemente vinculados. En las altas llanuras del sur cerca de Lubbock, el algodón es el cultivo dominante. Sin embargo, la porción de las llanuras meridionales del acuífero se está agotando y, en algunos casos, ya se ha perdido la irrigación. Otras áreas presentan una disminución de los niveles de agua con un aumento asociado de los costos de bombeo y una disminución de la producción de los pozos. Cada vez hay más competencia por el agua en esta región por parte de los sectores de exploración de petróleo y gas. Las políticas y leyes relativas al agua son distintas en los tres estados y en cada gobierno tribal, y en Kansas y en Texas también difieren según los diversos distritos de gestión de agua subterránea.

Otra importante área irrigada es el Valle del Río Grande, que sostiene una de las mayores áreas de producción de vegetales y cítricos, y que está sometida a tormentas tropicales, estrés calórico, sequías y una diversidad de presiones por insectos y enfermedades. Las áreas irrigadas en las partes subhúmedas de la región, como el área del acuífero de Rush Springs, en Oklahoma, tienen un mayor potencial de recarga que el acuífero Ogallala, pero la hidrogeología y la sostenibilidad del primero no están bien cuantificadas. La irrigación desde fuentes de agua superficiales, como en la producción algodonera cerca del lago Altus en la región sureste de Oklahoma, está profundamente sometida a la sequía, y no hubo agua disponible para la irrigación desde 2011 hasta 2014. Además, los cultivos especializados, los cultivos de nogal, y los cultivos de productos de mercado directo se irrigan en gran medida, y se enfrentan a diversos desafíos de plagas que son muy sensibles a los desafíos del clima. Al considerar las fuentes de agua dulce superficiales y subterráneas por separado, el agua superficial satisface el 68 % de las necesidades de agua de las Grandes Llanuras, mientras que el agua subterránea satisface el 32 %. Para la agricultura por irrigación, el agua superficial brinda un 57 % y el agua subterránea brinda un 43 % de las extracciones totales. Sin embargo, a nivel estatal, la distribución es más desigual. En Colorado, Montana y Wyoming, el agua superficial satisface más del 80 % de las necesidades de irrigación. En una escala más amplia, en Kansas, Nebraska y Texas, el agua subterránea satisface más del 75 % de las necesidades de irrigación (Ojima et al., 2015).
Abastecimiento de agua

Características

Los estados de Kansas, Oklahoma y Texas, que componen las llanuras meridionales, dependen del suministro de agua superficial y subterránea para mitigar las pérdidas agrícolas durante la sequía. Partes de los tres estados se asientan sobre el acuífero de Ogallala, una fuente finita de agua que se usa ampliamente para la irrigación. La región también aloja numerosos embalses creados mediante programas operados por el NRCS, el Cuerpo de Ingenieros del Ejército de EE. UU. y la Oficina de Recuperación.

Riesgos

- Periodo de varios años de sequías y de lluvias.
- Eventos meteorológicos más extremos (p. ej., diluvios y sequías).
- Alto potencial de evapotranspiración relacionado con temperaturas elevadas, bajo nivel de humedad y vientos de altas velocidades.
- Suministro menguante de agua subterránea.

Vulnerabilidades

- La reducción del nivel de la superficie de las reservas durante las sequías reduce el agua disponible para la irrigación y el suministro público de agua en comunidades rurales.
- El aumento del bombeo para irrigación y refrigeración del ganado en sistemas de confinamiento acelera la disminución de los niveles de agua subterránea, aumenta los costos de energía para el bombeo y reduce la vida útil del acuífero.
- Reducción del agua para el ganado en arroyos, estanques y pozos con sequías extendidas.
- La mayor temperatura del agua en combinación con la reducción de la dilución de los contaminantes durante los períodos de bajo flujo puede tener como resultado la floración de algas, incluidas las algas nocivas.
- La escorrentía durante tormentas intensas en tierras cubiertas por escasa vegetación transporta más sedimentos y contaminantes a las masas de agua.
- Inundación de tierras de cultivo y de pastoreo bajas durante eventos de lluvias extremas.

Estrategias de adaptación

- Mantener la cubierta vegetal en la superficie de la tierra y alentar la adopción de labranza de conservación para reducir la evaporación, la temperatura del suelo y la erosión, y para aumentar la infiltración.
- Restaurar los pastos en tierras altamente erosionables, implementar mejoras en la gestión de praderas, adoptar la siembra directa, utilizar cultivos de cobertura, restaurar áreas ribereñas, y establecer humedales de filtración para hacer frente a la escorrentía de nutrientes y bacterias provenientes de tierras agrícolas y para reducir la sedimentación.
- Adoptar sistemas de irrigación de alta eficiencia e implementar una planificación de la irrigación.
- Implementar programas de conservación del agua y de preparación para las sequías en comunidades rurales.
- Implementar planes de gestión de llanuras inundables.
- Reparar y mantener embalses existentes de agua.

4 https://www.owrb.ok.gov/supply/drought/reservoirstorage.php
Región de las llanuras

- Construir nuevos embalses para brindar un suministro adicional de agua para la agricultura y las comunidades.

Región de las llanuras

Trigo

Características
El trigo se cultiva en aproximadamente 20,6 millones de acres (8,3 millones de hectáreas) en los estados de las llanuras meridionales de Kansas, Oklahoma y Texas (Servicio Nacional de Estadísticas Agropecuarias, 2014), lo cual representa alrededor de un 37% de la superficie sembrada con trigo, y alrededor de un 43% de la producción de trigo de Estados Unidos. Además de la producción de granos, gran parte de la superficie sembrada con trigo en la región se usa para suministrar forraje de otoño e invierno al ganado de carne, en sistemas de doble propósito: la alimentación del ganado y la producción de granos.

Riesgos
- Temporadas de cultivo más prolongadas y cálidas, con una llegada anticipada de la primavera.
- Aumento de los eventos meteorológicos extremos (p. ej., diluvios y sequías).
- Alteración de la distribución de las precipitaciones estacionales.
- Heladas a fines de la primavera.
- Olas de calor.
- Aumento de las temperaturas generales durante los meses de cultivo de trigo de invierno.

Vulnerabilidades
- Algunas variedades de trigo pueden no cumplir con los requisitos de hibernación durante las temporadas inusualmente cálidas.
- Plantación poco confiable durante el otoño.
- Reducción del potencial de pastoreo durante el invierno a causa de los patrones de lluvia.
- Las primaveras más cálidas y secas pueden provocar un llenado de las semillas más corto y un menor rendimiento.
- Mayor posibilidad de erosión del suelo debido a una mayor frecuencia de diluvios y a la exposición a vientos fuertes sobre la tierra expuesta mediante la labranza tradicional.
- Reducción de la producción de forraje y de las ganancias de ganado por una mayor incidencia de ocurrencias de sequías.
- Reducción del agua para el ganado en arroyos, estanques y pozos por sequías extendidas que presentan desafíos para los acres de doble propósito sembrados con trigo.
- Mayor estrés calórico en los animales que pacen en campos de trigo.
- Mayor presión de las plagas en el ganado debido a las estaciones cálidas de cría más prolongadas.
- Aumento de las plagas causado por los cambios en los patrones meteorológicos, que conduce a una reducción de la calidad del trigo cosechado.

Estrategias de adaptación
- Incorporación de cultivos de cobertura en los acres en barbecho con énfasis en el aumento de la cubierta vegetal para mejorar la salud del suelo a fin de obtener beneficios para la capacidad de retención del agua del suelo y para la circulación de nutrientes.
- Investigación sobre variedades de trigo que sean menos susceptibles a las heladas fuera de temporada y a las condiciones de sequía.
- Conversión de los sistemas de cultivo convencionales con labranza a sistemas de siembra directa o de labranza reducida para minimizar la erosión, reducir el uso de combustible, aumentar la humedad del suelo y mejorar la salud del suelo.
- Gestión integrada de las plagas.
- Conversión a sistemas de irrigación más eficientes en los acres irrigados.
- Fuentes de agua adicionales y fuentes de sombra para el ganado en acres de trigo de doble propósito.
Características
El algodón se cultiva en aproximadamente 7,2 millones de acres (2,9 millones de hectáreas) en los estados de las llanuras meridionales de Kansas, Oklahoma y Texas (Servicio Nacional de Estadísticas Agropecuarias, 2014), principalmente en las regiones semiáridas de Texas, lo cual representa alrededor de un 58 % de la superficie sembrada con trigo, y alrededor de un 42 % de la producción de trigo de Estados Unidos. El algodón se cultiva en condiciones de secano, al igual que en condiciones de irrigación con agua subterránea (acuífero de Ogallala y otros) y con agua superficial (p. ej., sistema de irrigación de Altus-Lugar en Oklahoma).

Riesgos
- Aumento de los eventos meteorológicos extremos (p. ej., diluvios y sequías).
- Alteración de la distribución de las precipitaciones (más precipitaciones durante el invierno y la primavera, menos precipitaciones durante el verano).
- Heladas a fines de la primavera. Heladas a comienzos del otoño.
- Dinámica acelerada de los patrones de temperatura.
- Alta temperatura del suelo.
- Alto potencial de evaporación relacionado con temperaturas elevadas, bajo nivel de humedad y vientos de altas velocidades.
- Tormentas severas (hielo, granizo, viento, actividad de tornados).

Vulnerabilidades
- Sequía y estrés calórico en las plantas.
- Abastecimiento reducido de agua superficial.
- Reducción acelerada de los niveles de agua subterránea.
- Menor confiabilidad de las precipitaciones de la primavera y el otoño.
- Aumento de las presiones de las plagas.
- Aumento de los costos de energía en relación con la reducción del abastecimiento de agua para irrigación.
- Pérdida de plántulas por causa de la erosión eólica o de las altas temperaturas de la superficie del suelo.
- Mayor posibilidad de erosión del suelo debido a una mayor frecuencia de diluvios y a la exposición a vientos fuertes sobre la tierra expuesta mediante la labranza tradicional.
- Aumento de las plagas causado por los cambios en los patrones meteorológicos, que conduce a una reducción de la calidad del trigo cosechado.

Estrategias de adaptación
- Incorporación de cultivos de cobertura con énfasis en la mejora de la salud del suelo a fin de obtener beneficios para la capacidad de retención del agua del suelo y para la circulación de nutrientes.
- Programas de gestión integrada de las plagas.
- Gestión de los riesgos mediante programas de comercialización y seguros.
- Investigación sobre variedades de trigo que sean menos susceptibles a las condiciones de sequía.
Región de las llanuras

- Conversión de los sistemas de cultivo convencionales con labranza a sistemas de siembra directa o de labranza reducida para minimizar la erosión, reducir el uso de combustible, aumentar la humedad del suelo y mejorar la salud del suelo.
- Gestión integrada de las plagas.
- Conversión a sistemas de irrigación más eficientes en los acres irrigados.
Región de las llanuras

Sorgo

Características
El sorgo se cultiva en aproximadamente 4,2 millones de acres (1,6 millones de hectáreas) en los estados de las llanuras meridionales de Kansas, Oklahoma y Texas (Servicio Nacional de Estadísticas Agropecuarias, 2014). También se cultivan 0,26 millones de acres (0,1 millones de hectáreas) adicionales con sorgo para forraje. Existe un mercado emergente para el sorgo como cultivo para bioenergía.

Riesgos
- Aumento de los eventos meteorológicos extremos (p. ej., diluvios y sequías).
- Alteración de la distribución de las precipitaciones estacionales (más precipitaciones durante el invierno y la primavera, pero menos precipitaciones durante el verano).
- Olas de calor.
- Heladas a comienzos del otoño.
- Alto potencial de evaporación relacionado con temperaturas elevadas, bajo nivel de humedad y vientos de altas velocidades.

Vulnerabilidades
- Sequía y estrés calórico en las plantas.
- Aumento de las presiones de las plagas.
- Deficiencia en la emergencia de las cabezas y la producción de semillas asociada con la sequía.
- Mayor erosión del suelo debido a una mayor frecuencia de diluvios en tierras con escasa cobertura de plantas.
- Más plagas causadas por los cambios en los patrones meteorológicos, que conducen a una reducción de la calidad del trigo cosechado.

Estrategias de adaptación
- Incorporación de cultivos de cobertura con énfasis en el aumento de la cubierta vegetal para mejorar la salud del suelo a fin de obtener beneficios para la capacidad de retención del agua del suelo y para la circulación de nutrientes.
- Programas de gestión integrada de las plagas.
- Gestión de los riesgos mediante programas de comercialización y seguros.
- Énfasis en la conversión de los sistemas de cultivo convencionales con labranza a sistemas de siembra directa o de labranza reducida para minimizar la erosión, reducir el uso de combustible, aumentar la humedad del suelo y mejorar la salud del suelo.
- Gestión integrada de las plagas.
- Variedades tolerantes al calor, la sequía y las plagas.
Maíz

Características
El maíz se cultiva en aproximadamente 5,86 millones de acres (2,37 millones de hectáreas) en los tres estados de las llanuras meridionales de Kansas, Oklahoma y Texas (Servicio Nacional de Estadísticas Agropecuarias, 2014). Aunque el maíz de secano se cultiva principalmente en la región este de Kansas y Texas, el maíz irrigado se cultiva principalmente en el área de Ogallala, en las franjas salientes de Texas y Oklahoma y en la región oeste de Kansas.

Riesgos
- Eventos meteorológicos más extremos (p. ej., diluvios y sequías).
- Alteración de la distribución de las precipitaciones estacionales (más precipitaciones durante el invierno y la primavera, pero menos precipitaciones durante el verano).
- Olas de calor.
- Dinámica acelerada de la temperatura.

Vulnerabilidades
- Perturbación de las plantas por sequía.
- Estrés calórico, particularmente durante el panojamiento y la polinización.
- Mayor presión de las plagas.
- Agotamiento del suministro de agua para irrigación.
- Costos elevados de energía.
- Aumento de la erosión del suelo debido a una mayor frecuencia de diluvios en tierras con escasa cobertura de plantas.

Estrategias de adaptación
- Variedades tolerantes al calor y la sequía.
- Mejora de la eficiencia en la irrigación.
- Sistemas de gestión de irrigación limitada.
- Énfasis en el aumento de la cubierta vegetal para mejorar la salud del suelo a fin de obtener beneficios para la capacidad de retención del agua del suelo y para la circulación de nutrientes.
- Gestión integrada de las plagas.
- Gestión de los riesgos mediante programas de comercialización y seguros.
Región de las llanuras

Soja

Características
La soja se cultiva en aproximadamente 4,17 millones de acres (1,68 millones de hectáreas) en los estados de las llanuras meridionales de Kansas, Oklahoma y Texas (Servicio Nacional de Estadísticas Agropecuarias, 2014), principalmente en la región este de Kansas.

Riesgos
- Aumento de los eventos meteorológicos extremos (p. ej., diluvios y sequías).
- Alteración de la distribución de las precipitaciones estacionales (más precipitaciones durante el invierno y la primavera, pero menos precipitaciones durante el verano).
- Olas de calor.
- Dinámica acelerada de la temperatura.

Vulnerabilidades
- Sequía y estrés calórico en las plantas.
- Aumento de las presiones de las plagas.
- Aumento de la erosión del suelo debido a una mayor frecuencia de diluvios en tierras con escasa cobertura de plantas.

Estrategias de adaptación
- Incorporación de cultivos de cobertura con énfasis en el aumento de la cubierta vegetal para mejorar la salud del suelo a fin de obtener beneficios para la capacidad de retención del agua del suelo y para la circulación de nutrientes.
- Programas de gestión integrada de las plagas.
- Gestión de los riesgos mediante programas de comercialización y seguros.
- Investigación con énfasis en las variedades que sean menos susceptibles a las condiciones de sequía.
- Énfasis en la conversión de los sistemas de cultivo convencionales con labranza a sistemas de siembra directa o de labranza reducida para minimizar la erosión, reducir el uso de combustible, aumentar la humedad del suelo y mejorar la salud del suelo.

Referencia: (Servicio Nacional de Estadísticas Agropecuarias, 2014)
Región de las llanuras

Horticultura

Características
Los estados de Kansas, Oklahoma y Texas, que componen las llanuras meridionales, alojan una amplia variedad de cultivos de vegetales, frutas, plantas ornamentales, césped y cultivos hortícolas. La inversión de capital y los costos de producción son extremadamente elevados para estos cultivos, por lo que tienen una gran vulnerabilidad financiera al clima extremo. Los cultivos casi siempre son irrigados, debido a las elevadas inversiones.

Riesgos
- Aumento de los eventos meteorológicos extremos (p. ej., diluvios y sequías).
- Heladas a fines de la primavera. Heladas a comienzos del otoño.
- Olas de calor.
- Dinámica acelerada de la temperatura.
- Alta temperatura del suelo.
- Alto potencial de evaporación relacionado con temperaturas elevadas, bajo nivel de humedad y vientos de altas velocidades.
- Tormentas severas (hielo, granizo, viento, tornados).

Vulnerabilidades
- Las heladas tardías pueden provocar pérdidas de cultivos, incluida la posibilidad de pérdida de cultivos arbóreos perennes.
- Las olas de calor y la dinámica acelerada entre los extremos de temperaturas cálidas y frías degradan la productividad y, especialmente, la calidad de los productos.
- La reducción acelerada de los niveles de agua subterránea puede provocar el aumento del costo de la irrigación.
- Mayores presiones de las plagas relacionadas con estaciones de cultivo más prolongadas y la acumulación más rápida de unidades de calor.
- Deficiencia en la producción de semillas asociada con la sequía o con el estrés calórico durante la polinización.
- Aumento de la erosión del suelo debido a una mayor frecuencia de diluvios en tierras con escasa cobertura de plantas.
- El daño a los invernaderos, a los túneles de cultivo y a la infraestructura de producción puede provocar la pérdida de cultivos y costos elevados en la reparación o reconstrucción.

Estrategias de adaptación
- Desarrollar sistemas eficientes de irrigación y métodos eficientes de refrigeración mediante el uso del agua.
- Desarrollar sistemas de pulverización para mitigar los efectos de las heladas tardías en los cultivos.
- Desarrollar o plantar variedades más tolerantes al calor y a las sequías.
Región de las llanuras

- Énfasis en el aumento de la cubierta vegetal para mejorar la salud del suelo a fin de obtener beneficios para la capacidad de retención del agua del suelo y para la circulación de nutrientes.

Referencia: (Kunkel et al., 2014).
2.2 Descripción general de los sistemas de ganadería respecto de los riesgos, las vulnerabilidades y las estrategias generales de adaptación

Producción de ganado bovino de carne y sistemas de pastoreo asociados

La producción de ganado bovino de carne es una de las mayores fuentes de ingreso para los productores en los estados de las llanuras meridionales. Todas las fases de producción de carne (la fase de vaca-becerro, la de cebado y la de acabado) son importantes en esta región. Las fases de pastoreo extensivo se basan en un uso diversificado de la tierra que incluye pastos de pradera nativos, una variedad de pastizales y cultivos anuales. El trigo de invierno es un importante forraje de las estaciones fías, generalmente como parte de sistemas de doble propósito que producen forraje y granos. La sequía es una de las principales preocupaciones climáticas para el ganado de carne, ya que afecta la disponibilidad de forraje, la calidad del forraje, el abastecimiento de agua y las perturbaciones relacionadas con el calor en el ganado.

Producción animal intensiva

Además de los corrales de engorde del ganado de carne, también son importantes los grandes sistemas de ganado lechero y porcino, generalmente en las regiones semiáridas del oeste. Estos sistemas dependen del abastecimiento de agua, generalmente del acuífero de Ogallala, y se ven afectados por los elevados costos de energía y por problemas de salud y productividad animal asociados con las altas temperaturas. La producción de aves de corral es muy importante en la porción oriental de las llanuras meridionales. La producción avícola se relaciona con la producción de ganado de carne porque las heces de las aves generalmente se aplican a los pastizales como fertilizante. El enriquecimiento de nutrientes en las cuencas hidrográficas ha provocado un gran conflicto interestatal relacionado con la calidad del agua en el abastecimiento de agua (Tulsa) y en las reservas para recreación, como así también en ríos que forman parte del paisaje y que son importantes para el turismo de recreación.
Región de las llanuras

Ganado bovino de carne

Características
En los estados de las llanuras meridionales de Kansas, Oklahoma y Texas se crían aproximadamente 7,3 millones de cabezas de ganado de carne (Servicio Nacional de Estadísticas Agropecuarias, 2014), que generan casi $27 000 millones en ventas totales. Los tres estados se encuentran dentro de los diez estados principales en términos de ventas de ganado y de existencias totales de ganado. Texas y Kansas se encuentran entre los cinco estados principales respecto de la cantidad de ganado total en proceso de engorde.

Riesgos

- Exposición a temperaturas extremas, tanto en relación con las olas de calor como con las olas de frío; vulnerabilidad a las perturbaciones creadas por cambios rápidos y extremos en la temperatura.
- Dinámica acelerada de la temperatura.
- Alto potencial de evaporación y exceso de demanda de abastecimiento de agua relacionados con temperaturas elevadas, bajo nivel de humedad y vientos de altas velocidades.
- Secuencia.
- Efecto en el abastecimiento de forraje y alimentación a causa de los cambios en los patrones de lluvias y en las temperaturas en general.

Vulnerabilidades

- Pérdida de productividad y aumento de pérdidas por muerte durante fríos extremos y olas de calor.
- Aumento de las perturbaciones a causa de los cambios rápidos de las temperaturas extremas.
- Cambios en los patrones de precipitaciones y temperatura que conducen a un riesgo a largo plazo para la disponibilidad de forraje, tanto en pastizales como en praderas, y para los pastos de trigo de invierno.
- Costos más elevados de energía.
- Exceso de demanda en el abastecimiento de agua para el consumo por parte del ganado de carne.
- Mayor expansión de plantas leñosas (p. ej., cedro rojo oriental) que reduce la productividad y la capacidad de carga, a la vez que aumenta el riesgo de incendios forestales.
- Los cambios en la vegetación pueden afectar a las especies amenazadas y en peligro de extinción, y a las especies bajo preocupación.

Estrategias de adaptación

- Adoptar o desarrollar razas que sean más tolerantes a los niveles extremos de calor y frío.
- Construir instalaciones para el uso eficiente del agua y la energía.
- Desarrollar suministros e instalaciones adicionales de agua que brindan sombra y refrigeración para el ganado.
- Adoptar sistemas silvopastoriles para brindar sombra para el ganado y diversificar los emprendimientos.
- Convertir los acres usados para la producción de alimento y forraje con sistemas convencionales de cultivo con labranza a sistemas de siembra directa o de labranza reducida, con la inclusión de cultivos de cobertura diseñados para utilizarse como fuentes adicionales de pastos y heno para rebaños de ganado de carne.
Adaptar la gestión de los pastos para hacer coincidir la disponibilidad y la demanda del forraje, con inclusión de flexibilidad en la carga ganadera, el tiempo y la estación de pastoreo, a fin de brindar una vegetación más heterogénea.

Practicar el arrendamiento de pastos (a fin de permitir descansar los pastos por >1 año) para proporcionar forraje durante períodos secos.

Adoptar estrategias de gestión proactiva para reducir las especies invasoras a fin de reducir el riesgo de incendios y de promover la resiliencia de comunidades de plantas nativas.
Región de las llanuras

Tierras de pastoreo

Características

Los estados de las llanuras meridionales de Kansas, Oklahoma y Texas cuentan con aproximadamente 156,6 millones de acres (63,3 millones de hectáreas) de tierras de pastoreo (es decir, pastos y pastizales) (Servicio Nacional de Estadísticas Agropecuarias, 2014), lo cual representa alrededor de un 30 % de la superficie de tierras para pastoreo de propiedad privada en los Estados Unidos. En estas tierras se realiza la producción de ganado rumiante, principalmente ganado de carne. La región también tiene una creciente industria caprina y algunas ovejas que utilizan estos acres.

Riesgos

- Temporadas de cultivo más prolongadas y cálidas, con una llegada anticipada de la primavera.
- Mayor cantidad de eventos meteorológicos más extremos (p. ej., diluvios y sequías).

Vulnerabilidades

- Aumento del riesgo de incendios por causa de los veranos más cálidos y secos que se esperan.
- Mayor posibilidad de erosión del suelo debido a una mayor frecuencia de diluvios en tierras con escasa cobertura de plantas.
- Menor producción de forraje y de las ganancias de ganado por una mayor incidencia de ocurrencias de sequías.
- Menos agua para el ganado en arroyos, estanques y pozos por sequías extendidas.
- Más estrés calórico en animales.
- Mayor presión de las plagas en el ganado debido a las estaciones de cría más cálidas y más prolongadas.
- Mayor expansión de plantas leñosas (p. ej., cedro rojo oriental) que reduce la productividad y la capacidad de carga, y aumenta el riesgo de incendios forestales.
- Los cambios en la vegetación pueden afectar a las especies amenazadas y en peligro de extinción, y a las especies bajo preocupación.

Estrategias de adaptación

- Adaptar la gestión de los pastos para proporcionar más flexibilidad para hacer coincidir la disponibilidad y la demanda del forraje.
- Establecer flexibilidad en la carga ganadera, el tiempo y la estación de pastoreo (y de descanso) en los ranchos, cuencas hidrográficas y paisajes, a fin de brindar una vegetación más heterogénea.
- Practicar el arrendamiento de pastos (a fin de permitir descansar los pastos por >1 año) para proporcionar forraje durante periodos secos.
- Implementar estrategias de gestión proactiva para reducir las especies invasoras a fin de reducir el riesgo de incendios y de promover la resiliencia de comunidades de plantas nativas.
- Enfatizar la expansión de la cubierta vegetal para mejorar la salud del suelo a fin de obtener beneficios para la capacidad de retención del agua del suelo y para la circulación de nutrientes.
- Expandir y mejorar las fuentes de agua para el ganado y la incorporación de estrategias para reducir las perturbaciones del calor y del frío en animales (es decir, brindarles refugio).

Referencia (Servicio Nacional de Estadísticas Agropecuarias, 2014).
Aves de corral y huevos

Características
En los estados de las llanuras meridionales de Kansas, Oklahoma y Texas se producen aproximadamente 802 millones de pollos de engorde, que generan alrededor de 4800 millones de libras (2177 millones de kilogramos) de carne (Servicio Nacional de Estadísticas Agropecuarias, 2014). En esta región también se producen alrededor de 5800 millones de huevos al año. La mayor parte de la producción para esta región se encuentra en las porciones orientales de Oklahoma y Texas. La producción avícola se realiza principalmente en granjas familiares, bajo contrato con grandes productores corporativos integrados que determinan el diseño de las instalaciones y las prácticas de producción aceptables. Las heces de las aves generalmente se usan como base de fertilizante para los pastos y otros cultivos, y las áreas con una producción avícola concentrada generalmente tienen excedente de N y P dentro de las cuencas hidrográficas, donde se aplican las heces de las aves en la tierra.

Riesgos
- Aumento de los eventos meteorológicos extremos (p. ej., diluvios y sequías).
- Olas de calor.
- Dinámica acelerada de la temperatura.
- Tormentas severas (hielo, granizo, viento, actividad de tornados).

Vulnerabilidades
- Problemas de salud y pérdidas de productividad debido a los cambios rápidos y dinámicos de la temperatura, y a las olas de calor.
- Aumento de los costos de energía para refrigeración durante las olas de calor.
- Aumento del riesgo de escorrentía de nutrientes de los pastos y campos fertilizados con heces de aves por diluvios más frecuentes.

Estrategias de adaptación
- Cría para aumentar la tolerancia al calor de las aves.
- Construir las instalaciones con diseños que minimicen los cambios de temperatura.
- Introducción de eficiencias energéticas en la producción avícola.
- Estrategias de eficiencia hídrica.
- Investigación para desarrollar estrategias alternativas de gestión de los desechos que no estén sometidas a la escorrentía.
- Énfasis en el aumento de la cubierta vegetal para mejorar la salud del suelo a fin de obtener beneficios para la capacidad de retención del agua del suelo y para la circulación de nutrientes, con el objetivo de reducir la pérdida de nutrientes por escorrentía.

Referencia: (Servicio Nacional de Estadísticas Agropecuarias, 2014)
Región de las llanuras

Ganado porcino

Características

En los estados de las llanuras meridionales (Kansas, Oklahoma y Texas) se produjeron aproximadamente $1600 millones de cerdos en 2012 (Servicio Nacional de Estadísticas Agropecuarias, 2014). La mayoría se produce en las porciones occidentales de la región, que son más secas, principalmente en el área del acuífero de Ogallala.

Riesgos

- Olas de calor.
- Dinámica acelerada de la temperatura.
- Alto potencial de evaporación relacionado con temperaturas elevadas, bajo nivel de humedad y vientos de altas velocidades.
- Sequía.

Vulnerabilidades

- Problemas de salud y pérdidas de productividad debido a los cambios rápidos y dinámicos de la temperatura, y a las olas de calor.
- Mayores costos de energía para refrigeración durante las olas de calor.
- Mayor riesgo de escorrentía de nutrientes provenientes de sistemas de desechos de animales.
- Reducción acelerada de los niveles de agua subterránea que provoca un riesgo a largo plazo para el suministro de alimentos.

Estrategias de adaptación

- Adoptar o desarrollar razas que sean más tolerantes al calor.
- Construir instalaciones para el uso eficiente del agua y la energía.
- Construir instalaciones con diseños que minimicen los cambios de temperatura.
- Aumentar el uso eficiente de la energía.
- Mejorar las estrategias de eficiencia hídrica y reciclaje.
- Realizar investigaciones para desarrollar estrategias alternativas de gestión de los desechos que no estén sometidas a la escorrentía.

Referencia: (Servicio Nacional de Estadísticas Agropecuarias, 2014).
Características

En los estados de las llanuras meridionales (Kansas, Oklahoma y Texas) se producen aproximadamente $2300 millones de pollos de engorde, principalmente en Texas (Servicio Nacional de Estadísticas Agropecuarias, 2014). Desde 2007 ha habido una rápida expansión de los rebaños en las regiones de las altas llanuras, por encima del acuífero de Ogallala. Durante este tiempo, se ha reducido la cantidad de productoras lecheras en las porciones más húmedas de la región.

Riesgos

- Olas de calor.
- Dinámica acelerada de la temperatura.
- Alto potencial de evaporación relacionado con temperaturas elevadas, bajo nivel de humedad y vientos de altas velocidades.
- Sequía.

Vulnerabilidades

- Problemas de salud y pérdidas de productividad debido a los cambios rápidos y dinámicos de la temperatura, y a las olas de calor.
- Aumento de los costos de energía para refrigeración durante las olas de calor.
- Aumento del riesgo de escorrentía de nutrientes provenientes de sistemas de desechos de animales.
- Reducción acelerada de los niveles de agua subterránea que provoca un riesgo a largo plazo para el suministro de alimentos.

Estrategias de adaptación

- Adopción o desarrollo de razas que sean más tolerantes al calor.
- Instalaciones para el uso eficiente del agua y la energía.
- Construir las instalaciones con diseños que minimicen los cambios de temperatura.
- Aumentar la eficiencia en el uso de la energía.
- Estrategias de eficiencia hídrica y reciclaje.
- Investigación para desarrollar estrategias alternativas de gestión de los desechos que no estén sometidas a la escorrentía.
- En las tierras de forraje en las que hay ganado lechero, énfasis en el aumento de la cubierta vegetal para mejorar la salud del suelo a fin de obtener beneficios para la capacidad de retención del agua del suelo y para la circulación de nutrientes.

Referencia: (Servicio Nacional de Estadísticas Agropecuarias, 2014).
3 Sensibilidades forestales regionales al cambio climático y estrategias de adaptación

Los recursos forestales, que se componen de bosques naturales, bosques gestionados con fines comerciales y superficies arboladas que no cumplen con la definición de bosque por su tamaño, ocupan una pequeña pero importante superficie de tierra en la región de las llanuras meridionales (Figura 3). Estos recursos forestales de las llanuras meridionales generan muchos beneficios que son importantes para la agricultura y las comunidades circundantes, ya que brindan servicios de regulación de las cuencas hidrográficas necesarios para proporcionar recursos hídricos limpios, servicios de regulación del clima que incluyen la captura del carbono y la mejora de la calidad del aire, servicios de regulación de la diversidad biológica y servicios culturales. Se estimó que, en forma colectiva, tienen un valor aproximado de $92 900 millones al año solamente en Texas (Simpson et al., 2013). Aunque brindan capacidad de adaptación a las tierras, estos recursos forestales son posiblemente vulnerables a los factores previsibles de perturbación de un clima en cambio y de las condiciones meteorológicas extremas, por lo que también tienen capacidad de adaptación.

3.1 Bosques naturales de las llanuras meridionales

Fuera de las praderas de pastos cortos de Texas y Oklahoma y más hacia el este, las precipitaciones anuales aumentan y alcanzan las 16 pulgadas (400 mm) en las franjas salientes de Texas y Oklahoma y en la región oeste de Kansas. Este es un hito importante, porque los árboles caducifolios de clima templado necesitan aproximadamente 16 pulgadas (400 mm) de precipitaciones anuales. A medida que las precipitaciones anuales primero alcanzan el límite mínimo de 400 mm y luego lo exceden, el grupo disperso de árboles individuales comienza a convertirse en una sabana (una mezcla de árboles y pastizales). Con precipitaciones adicionales más hacia el este, los árboles dominan el paisaje, y se desarrolla un bosque abierto. Finalmente, en el sudeste de Kansas y en el este de Texas y Oklahoma hay suficientes precipitaciones para sostener el comienzo del dosel arbóreo cerrado y densamente poblado del bosque oriental de clima templado.

La región oriental de las llanuras meridionales tiene seis tipos principales de bosques. Los más comunes son dos tipos de pinos. Los tipos de bosque de pino taeda-pino de hoja corta y pino de hoja larga-pino ellioti están dominados por las cuatro especies de pino amarillo del sur. En estos bosques, una variedad de pinos compone al menos el 50 % de la totalidad de los árboles. Históricamente, el pino de hoja larga (Pinus palustris) ocupaba una porción mucho mayor de la región, pero fue talado y se plantó, en su lugar, el pino taeda (Pinus taeda) debido a su mayor velocidad de crecimiento. Los robles (Quercus sp.), pacanas (Carya sp.) y álamos (Populus sp.) tolerantes a la sequía componen la mayor parte de las especies de caducifolios en el centro y en el este de la región, mientras que los pinos (Pinus sp.) son las especies de coníferas dominantes.

La mayoría de los bosques en los estados de las llanuras meridionales se encuentran en tierras privadas, generalmente de propiedad de grandes empresas madereras y de propietarios de tierras más pequeñas que tienen distintas empresas basadas en bosques. En la región este de Oklahoma, los bosques y los grandes sistemas de reservas son la base de un importante sector turístico.

En todo Texas, el sector forestal consiste en 12 millones de acres (4,8 millones de hectáreas) de bosques comerciales ubicados principalmente en 43 condados de la región este de Texas, y se mantiene dentro de los 10 principales sectores manufactureros del estado (Simpson et al., 2013). El sector forestal es uno de los dos mayores empleadores manufactureros en 25 de los 43 condados de la región este de Texas, y tiene un efecto económico total de $27 000 millones en producción industrial, $9900 millones en valor agregado, $5900 millones en ingresos laborales y 117 000 puestos de trabajo para los habitantes de Texas. En forma similar, Oklahoma cuenta con aproximadamente 10 millones de acres (4 millones de hectáreas) de bosque ubicados principalmente en la porción central y la porción oriental del estado. Los bosques de Oklahoma proporcionan aproximadamente 8000 puestos de trabajo y crean $2800 millones en ventas anuales (Johnson et al., 2010). Kansas tiene aproximadamente 5,2 millones de acres (2,1 millones de hectáreas) de bosques, zonas arboladas y árboles que ocupan alrededor del 10 % del estado, y los datos de
existencia recopilados a lo largo de los años indican que los bosques continúan expandiéndose. Las plantaciones agrosilvícolas componen una importante porción de los recursos forestales de Kansas (Atchison et al., 2010).

Amenazas

Sequía

Las especies ubicadas en los márgenes de su hábitat generalmente son muy sensibles a los cambios y a la variabilidad ambiental. Dado que se necesitan como mínimo 16 pulgadas (400 mm) de precipitaciones al año para mantener la supervivencia de los árboles, los fenómenos episódicos, como las sequías que reducen las precipitaciones anuales por debajo de esta cantidad, pueden afectar rápida y gravemente la salud del bosque. Un fenómeno de este tipo ocurrió en 2011–12 cuando una sequía durante la temporada de cultivo afectó la región de las llanuras meridionales y mató más de 1 millón de árboles en Texas y Oklahoma. Las predicciones climáticas a futuro con modelos de precipitaciones dentro de las llanuras meridionales son muy variables, pero hay una importante coincidencia de los modelos en el aumento de la temperatura del aire (Servicio Forestal Texas A&M, 2012). La evapotranspiración aumenta junto con el aumento de la temperatura del aire. Por esta razón, también aumentará la demanda de agua de los bosques (Sun et al., 2008). El aumento del consumo de agua de los árboles reducirá el caudal de los arroyos y esto podría tener un efecto negativo en los hábitats acuáticos y la biodiversidad, incluso si no hay cambios en las precipitaciones anuales.

Incendios

Las sequías se relacionan con el clima seco, pero también pueden ocurrir en condiciones de mucho calor. La combinación de un clima seco y caluroso presenta importantes riesgos de incendios. El riesgo empeora si una sequía actual o anterior ha aumentado las cargas de combustible mediante mortalidad causada por la sequía. El raleo y la reducción de densidad forestal son prácticas de gestión para la adaptación que reducen el riesgo de mortalidad de los árboles por causa de la sequía disminuyendo la gran demanda sobre la humedad del suelo; además, estas prácticas reducen el riesgo de incendios limitando las cargas potenciales de combustible. A medida que la variabilidad del clima aumente la amplitud y la frecuencia de los ciclos de sequía, es posible que el raleo forestal deba volverse más frecuente y agresivo.

Insectos

El gorgojo del pino ha sido un problema episódico por mucho tiempo en la región oriental de Texas, ya que aparece en los pinares bajo diversas condiciones ambientales (McNulty et al., 1998). En Ayres et al. (2000) se predijo que las apariciones de gorgojos del pino se volverían más numerosas con el cambio climático debido a la duración más prolongada de la época de reproducción y la posibilidad de más generaciones de un año al otro. La principal medida de control es ubicar rápidamente las áreas de aparición de los gorgojos del pino para retirar y quemar todos los árboles infestados.

3.2 Tierras forestales nacionales

Además de los bosques comerciales, Texas también tiene alrededor de 653 000 acres (264 259 hectáreas) de bosques nacionales y 173 000 acres (70 010 hectáreas) de bosques estatales y locales. Algunos recursos naturales clave en la región de las llanuras meridionales incluyen varios bosques nacionales, incluido el Bosque Nacional Ouachita en Oklahoma; y los Bosques Nacionales Davy Crockett, Sabine y Sam Houston, en Texas. Además, la región de las llanuras meridionales incluye 810 993 acres (328 197 hectáreas) de praderas nacionales, incluidas las praderas Kiowa y Rita Blanca en Nuevo México, Oklahoma y Texas, administradas por el Bosque Nacional Cibola (Albuquerque, NM); las praderas nacionales Cimarron y Comanche en Kansas y Colorado, administradas por los bosques nacionales Pike y San Isabel (Pueblo, CO); y las praderas nacionales Lyndon B. Johnson y Caddo, administradas por los bosques y praderas nacionales de Texas (Lufkin, TX). La Estación de Investigación de las Montañas Rocosas del Servicio Forestal de EE. UU. (USFS RMRS) realizó una revisión y una evaluación de necesidades que sintetiza los conocimientos sobre los efectos del cambio climático sobre la fauna y la flora nativas de muchas de estas praderas, montes y...
Región de las llanuras

desiertos en el interior del oeste estadounidense, lo cual incluye partes de la región de las llanuras meridionales (Finch, 2012). Una herramienta basada en la web que permite a los administradores evaluar la vulnerabilidad de las especies al cambio climático complementa esta evaluación (Bagne et al., 2011). Además, la comprensión de las relaciones entre las plantas y el clima es crucial para hacer frente al efecto del calentamiento global y para llevar adelante programas de gestión de la vegetación que abordan los problemas emergentes (Clifford et al., 2013; Saenz-Romero et al., 2010). Por ejemplo, el momento en el que ocurren tanto las perturbaciones como las precipitaciones puede tener un importante efecto en la eficacia de los tratamientos de restauración (Ford, 2011; Ford y Johnson, 2006), lo cual es clave para los profesionales que toman decisiones de inversión e implementan acciones de gestión. En la porción oriental de las llanuras meridionales y en los bosques de pino y madera noble de Arkansas y Texas, los estudios se enfocan en los efectos del cambio climático, la gestión forestal y las plagas de insectos en la fauna silvestre y en el hábitat de esta, a fin de proporcionarles a los administradores mejores herramientas para restaurar y gestionar las poblaciones de fauna.

Los efectos del cambio climático en los ecosistemas, los problemas de recursos, las especies invasoras y la calidad y cantidad del agua crearán diversos riesgos y vulnerabilidades. Algunas preocupaciones en las llanuras meridionales incluyen una mayor presión en los bosques debido a las tormentas, la sequía, las plagas, los incendios y el aumento del nivel del mar; incendios forestales alimentados por las sequías prolongadas y la mala salud de los árboles; falta de disponibilidad de agua limpia para mantener los bosques saludables; presiones económicas debido al aumento de los cambios en la productividad de productos forestales y madereros de gran valor; y aumento de las poblaciones y de las áreas urbanas que traspasan los límites de las áreas forestales existentes.

Los estados de las llanuras meridionales han sido parte de la planificación para la mitigación y la adaptación tanto a nivel estatal como federal. Los estados pusieron énfasis en el hecho de que la gestión de las tierras puede mitigar el cambio climático y sus efectos en bosques y en comunidades humanas. Los árboles y los bosques tienen la capacidad de atrapar el dióxido de carbono, con lo que se reduce la concentración de gases de efecto invernadero en la atmósfera y se reduce, posiblemente, la gravedad del cambio climático. No solo plantar árboles, sino también aumentar el uso de productos forestales de duración prolongada puede ayudar a contrarrestar las emisiones de carbono. Plantar árboles en pueblos y ciudades también puede ayudar a conservar la energía, con lo que se reducen directamente las emisiones. Finalmente, la gestión de la tierra puede diseñarse a medida para ayudar a las personas y a los bosques a adaptarse al cambio climático. La conservación y la restauración de las tierras forestales puede ayudar a mantener los servicios vitales de los ecosistemas, al igual que la administración con fines de resiliencia.
Características

En la agricultura se han utilizado diversas prácticas para aprovechar los beneficios interactivos de la combinación de árboles y matas con cultivos o ganado para crear sistemas integrados y sostenibles de uso de la tierra en las llanuras meridionales. Estas prácticas con árboles proporcionan estrategias eficaces de adaptación para abordar el cambio climático y los eventos meteorológicos extremos que abarcan desde los efectos de las sequías hasta los efectos del flujo laminar. De las cinco prácticas principales de la agrosilvicultura, los cortavientos y los amortiguadores forestales ribereños han sido de mayor relevancia para las llanuras meridionales. Otras oportunidades de agrosilvicultura incluyen el silvopastoreo, que combina árboles con producción forestal y ganadera, y el cultivo en hileras (p. ej., nogales y heno), que puede ayudar a diversificar la producción y brindar otros servicios, a fin de reducir los riesgos bajo ciertas condiciones meteorológicas. Estas prácticas son vulnerables en sí mismas al cambio climático y deben designarse y gestionarse de conformidad con esto. Para obtener más información sobre cómo usar la agrosilvicultura para desarrollar operaciones y tierras resistentes al clima, consulte las referencias que se presentan abajo.

Riesgos

1. Temporadas de cultivo más prolongadas y cálidas, con una llegada anticipada de la primavera; menor acumulación de nieve.
2. Eventos meteorológicos más extremos (p. ej., diluvios y sequías).
3. Mayor riesgo de incendios a causa de veranos más cálidos y secos.
4. Más brotes de patógenos y pestes en bosques.

Vulnerabilidades

1. Mayor susceptibilidad a enfermedades y plagas a medida que aumentan las plagas y la presión en las plantas.
2. Posibilidad de asentamiento de especies invasoras dentro de las plantaciones de agrosilvicultura que ya se encuentran bajo presión.
3. Aumento de la mortalidad de plantas leñosas relacionada con perturbaciones antes de que las prácticas estén en pleno funcionamiento.
4. Cambios no predecibles en el tiempo óptimo para operaciones de vivero (es decir, recoger, almacenar y enviar).

Estrategias de adaptación

1. Plantar especies diversas para cubrir todas las probabilidades bajo las diversas condiciones creadas por las modificaciones de los patrones meteorológicos y por el cambio climático.

Para obtener más información: http://nac.unl.edu
2. Usar semillas de ubicaciones que actualmente tengan condiciones similares a las que se esperan a nivel local debido al cambio climático.
3. Plantar cultivares desarrollados y seleccionados para una mayor resistencia/resiliencia a los factores de perturbación.
4. Seleccionar especies leñosas con potencial de una mejor adaptación al clima del futuro reconociendo que estas plantas tienen una expectativa de vida de 60 años o más.
5. Usar prácticas de establecimiento (p. ej., mantillos) y de gestión de la renovación (p. ej., poda, raleo y reforestación) para mantener y mejorar la salud y las funciones de los árboles.

Agrosilvicultura: soluciones forestales prácticas para las llanuras meridionales

La agrosilvicultura es un conjunto de prácticas que integra árboles a la producción agrícola y ganadera, a fin de crear operaciones y paisajes más diversos y resilientes, y con diversos propósitos. Las prácticas incluyen cortavientos forestales para los cultivos, el ganado, las granjas y las comunidades; cultivo en hileras; silvopastoreo; amortiguadores forestales ribereños y cultivo bajo árboles. A pesar de su escasa superficie total, los cortavientos y los amortiguadores forestales ribereños han tenido un papel muy importante para combatir los efectos negativos de los extremos climáticos y meteorológicos en las llanuras meridionales. Como parte del Programa de Silvicultura en los Estados con Pradera (1935–1942), se plantaron cortavientos forestales en las Grandes Llanuras para proteger los suelos de los estragos de las sequías que crearon el fenómeno conocido como Dust Bowl, o cuenco de polvo. A la vez, los cortavientos pueden aumentar la eficiencia de la irrigación o el uso del agua y, como resultado, mejorar la producción de cultivos en esta región ventosa con alta demanda de evapotranspiración (Dickey, 1988). La vegetación ribereña leñosa ayuda a estabilizar las riberas de los arroyos, como se documentó en Kansas durante las inundaciones de 1993 (Geyer et al., 2000), además de brindar protección para la calidad del agua. Al proporcionar servicios de mitigación y adaptación al cambio climático junto con otros beneficios, la agrosilvicultura les brinda a los granjeros, ganaderos, tribus nativas y comunidades oportunidades para aumentar la resiliencia de la tierra y el bienestar general bajo condiciones climáticas y meteorológicas cambiantes. Por ejemplo, se estima que los cortavientos en Kansas proporcionan servicios de protección de los cultivos por un valor de $31 millones al año y un ahorro energético para las granjas por un valor de $26 millones al año, a la vez que brindan servicios valiosos de conservación del suelo y de captura de carbono (Atchison et al., 2010).

Figura 12: Los vientos y las tierras altamente erosionables son una característica dominante en muchas partes de las llanuras meridionales. Los cortavientos pueden proporcionar protección a los cultivos, el ganado y las granjas y, a la vez, brindar servicios vitales de conservación del suelo.

En el Centro Nacional de Agrosilvicultura (NAC) del USDA (http://nac.unl.edu), el Servicio Forestal y el Servicio de Conservación de Recursos Naturales de EE. UU., junto con una red de socios a nivel nacional, desarrollan información relevante de agrosilvicultura y brindan asistencia a profesionales de recursos naturales en todo el país. Las iniciativas en curso incluyen: 1) métodos de contabilización del carbono para la agrosilvicultura e incorporación de la herramienta de contabilización del carbono perteneciente al NRCS del USDA, COMET-Farm (http://cometfarm.nrel.colostate.edu); 2) uso de la agrosilvicultura para mitigar el estrés calórico en el ganado; 3) herramientas como AgBufferBuilder (Dosskey, 2015) que pueden orientar un diseño y una colocación más eficientes de las prácticas; y 4) un estudio sobre el rendimiento de los cortavientos/cultivos que abarca la totalidad de las Grandes Llanuras para evaluar el efecto de los cortavientos en los cultivos bajo las condiciones actuales. Los científicos del Servicio de Investigación Agrícola están estudiando el potencial de los cortavientos en las Grandes Llanuras para mejorar el carbono en el suelo, hacer frente a los gases de efecto invernadero y servir como fuente de carga de alimentación biológica. La variabilidad futura del clima será un factor clave para determinar cómo estas plantas podrán adaptarse a las condiciones futuras. (Consultar Vulnerabilidades en la sección Agrosilvicultura de la página anterior).
4 Perfil de emisiones de gases de efecto invernadero (GEI) proveniente de la agricultura y los bosques dentro de la región, y oportunidades de mitigación

La agricultura en la región de las llanuras meridionales (incluidas la producción agrícola, ganadera y forestal) tiene unas emisiones netas de gases de efecto invernadero (GEI) de aproximadamente 43 teragramos4 de dióxido de carbono equivalente (Tg de CO$_2$ eq). En la región, las emisiones del óxido nitroso (N$_2$O) relacionado con los cultivos son el factor que más contribuye a los GEI, a 33 Tg de CO$_2$ eq, seguidas por las del metano (CH$_4$) proveniente de la fermentación entérica (32 Tg de CO$_2$ eq), y por las de CH$_4$ y N$_2$O provenientes del aprovechamiento del estiércol (8 Tg de CO$_2$ eq). La silvicultura es el factor que más contribuye al almacenamiento neto de carbono, a –26 Tg de CO$_2$ eq, seguida por los cambios en las existencias de carbono en el suelo, a –5 Tg de CO$_2$ eq.6

4.1 Cambios en las existencias de carbono en el suelo

Los cambios en las existencias de carbono en el suelo en los tipos principales de uso y gestión de la tierra tuvieron como resultado una captura neta de –4,5 Tg de CO$_2$ eq en 2008 (Tabla 4). En forma específica, los cambios en la producción de las tierras agrícolas ayudaron a capturar –1,6 Tg de CO$_2$ eq, los cambios en la producción de heno ayudaron a capturar –0,9 Tg de CO$_2$ eq, y las tierras que se retiraron de las actividades agrícolas y se registraron en el Programa de Reservas para la Conservación ayudaron a capturar –2,0 Tg de CO$_2$ eq.

Las prácticas de labranza contribuyen a los cambios en las existencias de carbono en el suelo. La Tabla 5 muestra las prácticas de labranza por tipo de cultivo para el Centro de las Llanuras Meridionales. Las prácticas

5 Un teragramo (Tg) equivale a 10^{12} gramos, lo cual equivale a 10^9 kilogramos y a 1 millón de toneladas métricas.

6 El almacenamiento neto de carbono es el equilibrio entre la liberación y la absorción de carbono por un ecosistema. Un signo negativo indica que se capturó más carbono que los gases de efecto invernadero que se emitieron.
de gestión que adoptan la labranza reducida o la siembra directa pueden contribuir a un mayor almacenamiento de carbono a lo largo del tiempo según las condiciones específicas del sitio.
Región de las llanuras

4.2 Emisiones de óxido nitroso

En 2008, las emisiones de N₂O en la región de las llanuras meridionales fueron de aproximadamente 32,9 Tg de CO₂ eq. De estas emisiones, 15,7 Tg de CO₂ eq provinieron de tierras de cultivo y 17,3 Tg CO₂ eq provinieron de tierras de pastoreo. El factor que más contribuyó a las emisiones directas de N₂O relacionadas con los cultivos en la región (más de 58 %) fue la producción de maíz, trigo y algodón.

Como se indica en la Tabla 6, el factor que más contribuyó a las emisiones directas de N₂O fue el cultivo de maíz, trigo y algodón. La cantidad y el tiempo de uso de fertilizante a base de nitrógeno afecta la tasa de las emisiones directas e indirectas de N₂O. La Tabla 7 indica el porcentaje de acres nacionales que no cumplieron con los criterios de tasa o de tiempo según se definen en Ribaudo et al. (2011). Los criterios de tiempo se definen en términos de las buenas prácticas para la cantidad y el tiempo de aplicación del fertilizante. El cumplimiento del criterio de tasa de las buenas prácticas se define como la aplicación de un máximo de nitrógeno (comercial y de estiércol) del 40 % adicional al nitrógeno retirado con el cultivo al momento de la cosecha, sobre la base del objetivo declarado de rendimiento, incluido cualquier remanente del cultivo anterior. El cumplimiento del criterio de tiempo de las buenas prácticas se define como no aplicar nitrógeno en el otoño a cultivos plantados en la primavera (Ribaudo et al., 2011). La superficie que no cumpla con estos criterios representa oportunidades para la mitigación de los GEI.

Tabla 4: Estimaciones de los cambios en las existencias de carbono en el suelo para las llanuras meridionales por tipo principal de uso y gestión de la tierra, 2008

<table>
<thead>
<tr>
<th>Uso de la tierra</th>
<th>Emisiones (Tg de CO₂eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambio neto, tierra de cultivo</td>
<td>−1,63</td>
</tr>
<tr>
<td>Cambio neto, heno</td>
<td>−0,94</td>
</tr>
<tr>
<td>CRPb</td>
<td>−1,97</td>
</tr>
<tr>
<td>Tierra agrícola en suelos orgánicos</td>
<td>0,00</td>
</tr>
<tr>
<td>Totalc</td>
<td>−4,54</td>
</tr>
</tbody>
</table>

Fuente: USDA (2011)

a Sistemas de cultivo anuales en suelos minerales (p. ej., maíz, soja y trigo).
b Programa de Reservas para la Conservación.
c El total no incluye los cambios en almacenamiento de carbono en suelo orgánico de tierras del gobierno federal, incluidas aquellas que antes eran de propiedad privada, y no incluye almacenamiento de carbono por causa de aplicaciones de fango cloacal.

Tabla 5: Prácticas de labranza en las llanuras meridionales por región y tipo de cultivo (porcentaje de acres en los que se utiliza alguna práctica de labranza)

<table>
<thead>
<tr>
<th>Tipo de cultivo</th>
<th>Acresa</th>
<th>Siembra directa</th>
<th>Labranza reducida</th>
<th>Labranza convencional</th>
<th>Otra labranza de conservación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maíz</td>
<td>4 350 573</td>
<td>37 %</td>
<td>12 %</td>
<td>36 %</td>
<td>15 %</td>
</tr>
<tr>
<td>Algodón</td>
<td>4 761 792</td>
<td>8 %</td>
<td>13 %</td>
<td>79 %</td>
<td>0 %</td>
</tr>
<tr>
<td>Heno</td>
<td>1 296 655</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Sorgo</td>
<td>4 729 767</td>
<td>22 %</td>
<td>13 %</td>
<td>45 %</td>
<td>21 %</td>
</tr>
<tr>
<td>Soja</td>
<td>2 914 860</td>
<td>58 %</td>
<td>8 %</td>
<td>11 %</td>
<td>23 %</td>
</tr>
<tr>
<td>Trigo</td>
<td>18 506 048</td>
<td>6 %</td>
<td>34 %</td>
<td>50 %</td>
<td>10 %</td>
</tr>
<tr>
<td>Total</td>
<td>22 717 562</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7 Incluidas las emisiones directas e indirectas; la Tabla 6 solamente incluye las emisiones directas de los cultivos.
8 Las emisiones directas de N₂O se emiten directamente de los campos agrícolas y las emisiones indirectas de N₂O son emisiones asociadas con las pérdidas de nitrógeno a partir de la volatilización de nitrógeno como amoniaco (NH₃), óxidos de nitrógeno (NOₓ), y lixiviación y escorrentía.
Tabla 6: Emisiones directas de óxido nítrico (N₂O) por tipo de cultivo

<table>
<thead>
<tr>
<th>Tipo de cultivo</th>
<th>Emisiones directas de N₂O (Tg de CO₂ eq)</th>
<th>% de emisiones de N₂O de las tierras de cultivo de la región</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maíz</td>
<td>2,94</td>
<td>25,1 %</td>
</tr>
<tr>
<td>Trigo</td>
<td>2,33</td>
<td>19,8 %</td>
</tr>
<tr>
<td>Algodón</td>
<td>1,59</td>
<td>13,6 %</td>
</tr>
<tr>
<td>Sorgo</td>
<td>1,44</td>
<td>12,3 %</td>
</tr>
<tr>
<td>Soja</td>
<td>1,05</td>
<td>8,9 %</td>
</tr>
<tr>
<td>Heno</td>
<td>0,86</td>
<td>7,3 %</td>
</tr>
<tr>
<td>Cultivos no principales</td>
<td>1,52</td>
<td>13,0 %</td>
</tr>
<tr>
<td>Total</td>
<td>11,74</td>
<td>100,0 %</td>
</tr>
</tbody>
</table>

Tabla 7: Porcentaje nacional de acres que no cumplen con los criterios de tasa y tiempo

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>No cumple con la tasa</th>
<th>No cumple con el tiempo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maíz</td>
<td>35 %</td>
<td>34 %</td>
</tr>
<tr>
<td>Sorgo</td>
<td>24 %</td>
<td>16 %</td>
</tr>
<tr>
<td>Soja</td>
<td>3 %</td>
<td>28 %</td>
</tr>
<tr>
<td>Trigo</td>
<td>34 %</td>
<td>11 %</td>
</tr>
</tbody>
</table>

Fuente: (Ribaudo et al., 2011).

4.3 Perfil de GEI proveniente del ganado

Los sistemas de ganadería en las llanuras meridionales se enfocan principalmente en la producción de ganado de carne y ganado lechero, producción avícola, porcina, ovina, caprina y equina. En 2008, se criaron en la región más de 191 millones de aves de corral, 27 millones de cabezas de ganado (para carne y lechero) y 5 millones de cerdos (Departamento de Agricultura de EE. UU., 2011). Casi un 97 % del ganado en la región es ganado para la producción de carne. Al igual que con los patrones de la producción de ganado en todo el país, la principal fuente de GEI proveniente del ganado se debe a la fermentación entérica, los procesos digestivos que tienen como resultado la producción de metano (CH₄) (conocido como CH₄ entérico). En 2008, el ganado de las llanuras meridionales produjo 32,3 Tg de CO₂ eq de CH₄ entérico.⁹ La mayor parte de las emisiones restantes de GEI relacionadas con el ganado provienen de prácticas de aprovechamiento del estiércol, que producen tanto CH₄ como N₂O.¹⁰ En 2008, el aprovechamiento del estiércol en la región de las llanuras meridionales tuvo como resultado 8,5 Tg de CO₂ eq, teniendo en cuenta tanto el CH₄ como el N₂O, con la mayoría atribuida al CH₄ (Departamento de Agricultura de EE. UU., 2011).

Fermentación entérica

Los principales emisores de CH₄ entérico son los rumiantes (p. ej., el ganado bovino y ovino). Las emisiones se producen en menores cantidades en los otros tipos de ganado, como porcino, equino y caprino.

Las emisiones per cápita de CH₄ entérico del ganado lechero son entre un 40 % y un 50 % mayores que las del ganado de carne (p. ej., 2,2 toneladas métricas de CO₂ eq/cabeza/años para el ganado lechero frente a 1,6 toneladas métricas para el ganado de carne en 2008, debido

<table>
<thead>
<tr>
<th>Categoría animal</th>
<th>Tg de CO₂ eq</th>
<th>% de emisiones entéricas de CH₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganado bovino a</td>
<td>29,86</td>
<td>92,4 %</td>
</tr>
<tr>
<td>Ganado bovino b</td>
<td>2,15</td>
<td>6,7 %</td>
</tr>
<tr>
<td>Ganado caprino</td>
<td>0,04</td>
<td>0,1 %</td>
</tr>
<tr>
<td>Ganado equino</td>
<td>0,05</td>
<td>0,1 %</td>
</tr>
<tr>
<td>Ganado ovino</td>
<td>0,04</td>
<td>0,1 %</td>
</tr>
<tr>
<td>Ganado porcino</td>
<td>0,17</td>
<td>0,5 %</td>
</tr>
<tr>
<td>Total</td>
<td>32,30</td>
<td>100,0 %</td>
</tr>
</tbody>
</table>

⁹ El total de emisiones de CH₄ entérico para la región incluye emisiones provenientes de ganado y de otras fuentes.

¹⁰ La respiración del ganado también produce dióxido de carbono (CO₂), pero los efectos de ingerir plantas basadas en carbono y de expulsar CO₂ tienen como resultado cero emisiones netas.

Perfil de emisiones de gases de efecto invernadero (GEI) proveniente de la agricultura y los bosques dentro de la región, y oportunidades de mitigación

Página | 44
principalmente a su mayor peso corporal y los mayores requisitos de energía para los prolongados períodos de lactancia) (Agencia de Protección del Medio Ambiente de EE. UU., 2014). Sin embargo, en la región de las llanuras meridionales, debido a que el 97 % de la totalidad del ganado está compuesto por ganado de carne, la contribución general de emisiones de CH₄ entérico proveniente del ganado de carne es mucho mayor que la proveniente del ganado lechero (Departamento de Agricultura de EE. UU., 2011). La Tabla 8 muestra las emisiones de CH₄ por tipo de animal en 2008. Como se indica, la mayoría de las emisiones proviene del ganado bovino de carne y lechero.
Emisiones de sistemas de aprovechamiento del estiércol

El aprovechamiento del estiércol en las llanuras meridionales tuvo como resultado 5,0 Tg de CO₂ eq en forma de CH₄ y 3,5 Tg de CO₂ eq en forma de N₂O en 2008. La Tabla 9 proporciona un resumen de las emisiones de CH₄ y de N₂O por categoría de animal. Los desechos del ganado porcino y del ganado bovino lechero y de carne son responsables por la mayor parte de las emisiones relacionadas con el estiércol; los desechos del ganado lechero emiten el 38 % de CH₄ y el 11 % de N₂O, los desechos porcinos emiten el 37 % y el 4 % y los desechos del ganado de carne emiten el 17 % y el 81 %, respectivamente.

La distribución de la población animal en granjas de distintos tamaños varía de una categoría animal a otra. Un 42 % del ganado lechero en la región de las llanuras meridionales se cria en granjas con más de 2500 cabezas, y el 89 % del ganado porcino se encuentra en granjas con más de 5000 cabezas; las tecnologías de mitigación, como los digestores anaerobios, son más económicamente viables en las operaciones de las grandes granjas que en las operaciones de las granjas pequeñas, debido a las economías de escala. La Figura 13 proporciona un resumen de las emisiones de CH₄ y N₂O por categoría animal y por prácticas de aprovechamiento del estiércol. Las mayores fuentes de CH₄ son las lagunas anaerobias, las fósas profundas y los sistemas de líquidos/lodos, principalmente con los desechos de ganado porcino y ganado lechero y de carne. Las mayores fuentes de N₂O son los corrales de tierra del ganado de carne. La Figura 14 describe la proporción de ganado de carne, ganado lechero, y ganado porcino que se administra usando varios sistemas de aprovechamiento del estiércol. La mayoría de los desechos del ganado de carne se deposita en los pastos, mientras que los desechos del ganado bovino lechero y del ganado porcino se aprovecha usando una variedad de sistemas, entre los que se incluyen lagunas anaerobias, fósas profundas, corrales de tierra y sistemas de líquidos/lodos.

<table>
<thead>
<tr>
<th>Anima</th>
<th>Población</th>
<th>Metano Tg de CO₂ eq</th>
<th>Porcentaje</th>
<th>Óxido nítrico Tg de CO₂ eq</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganado porcino</td>
<td>5 290 000</td>
<td>1,86</td>
<td>37 %</td>
<td>0,14</td>
<td>4 %</td>
</tr>
<tr>
<td>Ganado lechero</td>
<td>861 115</td>
<td>1,88</td>
<td>38 %</td>
<td>0,40</td>
<td>11 %</td>
</tr>
<tr>
<td>Ganado bovino de carne</td>
<td>26 432 111</td>
<td>0,84</td>
<td>17 %</td>
<td>2,83</td>
<td>81 %</td>
</tr>
<tr>
<td>Aves de corral</td>
<td>191 091 537</td>
<td>0,22</td>
<td>5 %</td>
<td>0,13</td>
<td>4 %</td>
</tr>
<tr>
<td>Ganado equino</td>
<td>1 537 795</td>
<td>0,15</td>
<td>3 %</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ganado ovino</td>
<td>1 130 000</td>
<td>0,02</td>
<td>0 %</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ganado caprino</td>
<td>1 301 844</td>
<td>0,01</td>
<td>0 %</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>227 644 402</td>
<td>5,00</td>
<td>100 %</td>
<td>3,50</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Las definiciones de las prácticas de aprovechamiento de estiércol se pueden consultar en el Anexo 3-B de (ICF International, 2013).

11 Los digestores anaerobios son lagunas y tanques que mantienen las condiciones anaeróbicas y que pueden producir y capturar biogás que contiene metano. Este biogás se puede usar para electricidad o calor, o se puede quemar. En general, los digestores anaerobios se categorizan de la siguiente manera: laguna cubierta, mezcla completa y digestores de flujo a pistón. 12 Las definiciones de las prácticas de aprovechamiento de estiércol se pueden consultar en el Anexo 3-B de (ICF International, 2013).
4.4 Existencias de carbono forestal y cambios en las existencias

En el inventario anual de GEI informado por el USDA, los bosques y los productos de madera recolectados provenientes de bosques capturan 26 Tg de CO₂ eq por año en las llanuras meridionales (es decir, una cantidad equivalente a la cantidad de emisiones negativas); además, las tierras forestales de 70 096 000 acres (28 366 844 hectáreas) de tierra forestal en las llanuras meridionales mantienen 9807 Tg de CO₂ eq en las existencias de carbono forestal (Tabla 10).13

Los sistemas forestales gestionados en las llanuras meridionales se enfocan principalmente en la producción de madera blanda, además de servir como amortiguadores ribereños y cortavientos. Las actividades forestales representan oportunidades significativas para gestionar los GEI. Los administradores forestales de las llanuras meridionales usan una amplia variedad de técnicas de silvicultura para lograr los objetivos de gestión, la mayoría de las cuales tendrá efectos en la dinámica

Tabla 10: Existencias de carbono forestal y cambios en las existencias en las llanuras meridionales

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Unidades</th>
<th>Llanuras meridionales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambio neto de superficie</td>
<td>1000 ha/año</td>
<td>53</td>
</tr>
<tr>
<td>Existencias fuera del suelo</td>
<td>Tg de CO₂ eq</td>
<td>4623</td>
</tr>
<tr>
<td>Carbono orgánico en el suelo</td>
<td>Tg de CO₂ eq</td>
<td>5184</td>
</tr>
<tr>
<td>Cambio fuera del suelo</td>
<td>Tg de CO₂ eq/año</td>
<td>-21 a</td>
</tr>
<tr>
<td>Cambio en productos de madera recolectada</td>
<td>Tg de CO₂ eq/año</td>
<td>-5 a</td>
</tr>
<tr>
<td>Resumen de existencias de carbono forestal (Tg de CO₂ eq)</td>
<td></td>
<td>9807</td>
</tr>
<tr>
<td>Existencias fuera del suelo +</td>
<td>9807</td>
<td></td>
</tr>
<tr>
<td>Cambio en existencias de carbono forestal</td>
<td></td>
<td>-26</td>
</tr>
</tbody>
</table>

a Los valores negativos indican un retiro neto de carbono de la atmósfera.

13 Otros GEI como el N₂O y el CH₄ también son intercambiados por los ecosistemas forestales. Es posible que los suelos en condiciones de humedad o luego de una fertilización con nitrógeno emitan N₂O; este también se libera cuando se quema la biomasa forestal. El CH₄ generalmente es absorbido por la comunidad microbiana en suelos forestales, pero también puede ser emitido por los suelos forestales en humedales. Cuando se quema biomasa, ya sea en quema prescrita o controlada, o en un incendio, se emiten contaminantes precursores que pueden contribuir al ozono y a otros forzadores climáticos de vida corta, al igual que CH₄ (Departamento de Agricultura de EE. UU., 2014).
del carbono. Los efectos primarios de las prácticas silvícolas en el carbono forestal incluyen la mejora del crecimiento forestal (lo cual aumenta la tasa de captura de carbono) y de las prácticas de tala de árboles (que transfieren el carbono de los árboles en pie a los productos y residuos de la madera recolectada, los cuales eventualmente se desgastan o se queman como leña o pellas de madera). Otras actividades de gestión forestal tendrán como resultado una pérdida acelerada de carbono forestal, como cuando las perturbaciones al suelo aumentan la oxidación de la materia orgánica del suelo, o cuando la quema prescrita libera CO₂, N₂O y CH₄.

Las actividades de gestión forestal y sus efectos en el almacenamiento de carbono varían ampliamente en las llanuras meridionales, por sus distintos tipos de bosques, objetivos de propiedad y condiciones de los rodales. Sin embargo, hay prescripciones silvícolas que se usan comúnmente para los tipos de bosques que son comunes en las llanuras meridionales. Por ejemplo, el boletín técnico «Cuantificación de flujos de gases de efecto invernadero en agricultura y silvicultura: métodos para inventarios a escala de entidad» (2014) proporciona esta información para las regiones que superponen a las llanuras meridionales, es decir, la región sur central y la región de las Grandes Llanuras (ver Tabla 6-6 en página 6-59).

En el informe técnico general Evaluación de la Ley de Planificación de Recursos de 2010 del Servicio Forestal del USDA (2012) se presentan proyecciones a futuro de las existencias de carbono forestal en los Estados Unidos como resultado de diversas vulnerabilidades (p. ej., precipitaciones menores a las normales, temperaturas superiores a las normales) y otros factores de perturbación (p. ej., urbanización, otros desarrollos territoriales, demanda de combustible y fibra de bosques). La Evaluación de la Ley de Planificación de Recursos (RPA) proyecta que «la reducción de las áreas forestales, junto con el cambio climático y la cosecha, alterarán la composición de los tipos de bosques en todas las regiones». Por ejemplo, en el informe se señala que, para una región más extensa (es decir, las Montañas Rocosas) que incluye a Kansas y Oklahoma desde las llanuras meridionales, la tasa de crecimiento urbano es la más elevada, y se proyecta que disminuirán las áreas con abetos de Douglas y pinos contorcidos, mientras que aumentarán, según las proyecciones, las áreas con abetos, píceas, cícuta y pino ponderosa.

4.5 Oportunidades de mitigación

La Figura 15 presenta el potencial de mitigación por sector para la región de las llanuras meridionales. Cada barra representa el potencial de GEI por debajo de un precio de equilibrio de $100/tonelada métrica de CO₂ eq. Un precio de equilibrio es el nivel de pago (o precio del carbono) al cual una granja ve los beneficios económicos y los costos económicos asociados con la adopción como exactamente iguales. Conceptualmente, un precio de equilibrio positivo representaría el nivel mínimo de incentivo necesario para hacer que la adopción sea racional desde el punto de vista económico. Un precio de equilibrio negativo sugeriría lo siguiente: 1) no se requiere un incentivo adicional para hacer que la adopción sea eficaz en relación al costo; o 2) existen factores no pecuniarios (como el riesgo o la curva de aprendizaje requerida) que desalientan la adopción. El precio de equilibrio se determina a través de un análisis de flujo de fondos descontados de forma tal que los ingresos o los ahorros de costos sean iguales a los costos. Las dos barras de la izquierda representan reducciones por cambios en las prácticas de gestión que mitigan los GEI. Las tres barras de la derecha representan un aumento del almacenamiento del carbono por cambios en las prácticas de gestión. Se puede mitigar un total de 2,6 Tg de CO₂ eq a un precio de equilibrio por debajo de los $100/tonelada métrica de CO₂ eq. Los cambios en las prácticas de gestión de la tierra pueden aumentar el almacenamiento de carbono en 6,5 Tg de CO₂ eq a un precio de equilibrio inferior a $100/tonelada métrica de CO₂ eq. El sombreado con color dentro de una barra representa el potencial de mitigación o el potencial de aumento de almacenamiento de carbono por debajo de los distintos precios de equilibrio que se indican en la leyenda. Por ejemplo, los cambios en las prácticas de retiro de la tierra tienen el potencial de contribuir a un aumento de 2,2 Tg de CO₂ eq de almacenamiento de carbono por menos de $20/tonelada métrica de CO₂ eq (es decir, la barra de color celeste y verde claro).

14 Los precios de equilibrio generalmente se expresan en dólares por tonelada métrica de CO₂ eq. Este valor es equivalente a $100 000 000 por Tg de CO₂ eq, o a $100 000 000 por millón de toneladas métricas de CO₂ eq.

La mayor parte de las oportunidades de reducción de las emisiones netas de GEI proviene de prácticas de retiro de la tierra, como el retiro de suelos marginales y el establecimiento de una cubierta de conservación, y de la adopción de mejores prácticas de aprovechamiento del estiércol.

La tercera mayor oportunidad es mediante el aumento de existencias de carbono en las prácticas de gestión de la labranza (es decir, la adopción de prácticas de labranza reducida a largo plazo).

Las mayores reducciones en emisiones provenientes del aprovechamiento del estiércol consisten en instalar digestores de mezcla completa o laguna cubierta con generación de electricidad en granjas de cerdos y de ganado lechero, e instalar separadores mejorados en granjas lecheras con lagunas anaerobias.16

Suelos agrícolas

Para las granjas mayores a 250 acres (101 hectáreas), la tecnología de tasa variable es una opción de costo relativamente bajo para reducir las emisiones de N₂O provenientes de la aplicación de fertilizante.17

Reducir la aplicación de nitrógeno puede ser una opción de costo relativamente bajo para las granjas de

16 La reducción de emisiones excluye las reducciones de emisiones indirectas causadas por la reducción del uso de combustibles fósiles para proporcionar electricidad para el uso en la granja (es decir que las reducciones de emisiones solo abarcan las emisiones dentro de los límites de la granja).

17 La tecnología de tasa variable (VRT), una subcategoría de la agricultura de precisión, permite que los productores controlen con mayor precisión la tasa de insumos agrícolas para dar cuenta de las distintas condiciones dentro de un campo determinado. La VRT utiliza controles de tasa ajustable en los equipos de aplicación para aplicar distintas cantidades de insumos en sitios específicos y en momentos específicos (Extensión de Agricultura de Precisión de Alabama, 2011).
todos los tamaños. La transición desde la labranza convencional a las prácticas de gestión de campos que implican siembra directa o labranza reducida continua y, finalmente, a la siembra directa continua tiene como resultado un potencial relativamente alto de almacenamiento de carbono a un bajo costo (es decir, la magnitud del potencial de almacenamiento de carbono es varios órdenes de magnitud más elevado que el potencial de reducir las emisiones de N₂O). Las ganancias de carbono solo se pueden lograr si la siembra directa se adopta en forma permanente; de lo contrario, las ganancias se revertirán.
Retiro de tierras
Esta categoría incluye el retiro de tierras de cultivo marginales y el establecimiento de una cubierta de conservación, la restauración de humedales, el establecimiento de cortavientos y la restauración de los amortiguadores forestales ribereños. El establecimiento de cortavientos alrededor de tierras cultivadas susceptibles a la erosión y el retiro de los suelos marginales de las actividades de cultivo a fin de establecer una cubierta de pastos de conservación son las estrategias que brindan mayores oportunidades para aumentar el almacenamiento de carbono.

Aprovechamiento del estiércol
El potencial total de mitigación de CH₄ para los desechos del ganado en las llanuras meridionales es de 2,3 Tg de CO₂ eq. Las oportunidades de mitigación de los GEI de menor costo para el aprovechamiento del estiércol son, principalmente, para las grandes granjas de cerdos y ganado lechero. Las mayores reducciones de CH₄ se pueden lograr en las operaciones lecheras mediante una transición desde lagunas anaerobias a separadores de sólidos mejorados, una laguna anaerobia cubierta, un digestor de laguna cubierta o un digestor de mezcla completa. Para las grandes granjas de cerdos, las mejores y más rentables medidas de mitigación son la transición desde lagunas anaerobias, fosas profundas o sistemas de líquidos/lodos a digestores de mezcla completa o digestores de laguna cubierta, o la cobertura de una laguna existente.

Fermentación entérica
Las emisiones provenientes de la fermentación entérica son altamente variables y dependen del tipo de ganado, de su etapa de vida, de su actividad y de su situación de alimentación (p. ej., pastoreo, corral de engorde). Diversas prácticas han demostrado el potencial de una reducción eficaz de las emisiones provenientes de la fermentación entérica. Aunque la modificación de la dieta (p. ej., el aumento del contenido de grasas, la proporción de un forraje de mejor calidad, el aumento del contenido de proteínas) y la proporción de suplementos (p. ej., monensina, somatotropina bovina [bST]) son técnicas cuyo potencial de mitigación ha sido evaluado, no hay resultados concluyentes respecto de la eficacia de cada una de estas opciones.

5 Programas del USDA
El recientemente publicado Plan de Adaptación al Cambio Climático del USDA\(^\text{18}\) presenta estrategias o acciones para hacer frente a los efectos del cambio climático en áreas clave para la misión, incluida la producción agrícola, la seguridad alimenticia, el desarrollo rural y la conservación de bosques y recursos naturales. Los programas del USDA administrados a través del Servicio de Conservación de Recursos Naturales (NRCS), el Servicio Forestal de EE. UU. (USFS), la Agencia de Servicio Agrícola (FSA), la agencia de Desarrollo Rural (RD), la Agencia de Gestión de Riesgos (RMA) y el Servicio de Inspección Sanitaria Animal y Vegetal (APHIS) han tenido y seguirán teniendo un papel crucial en el mantenimiento de tierras de explotación en un clima variable, y son agencias colaboradoras clave para los Centros Climáticos del USDA. Las agencias que colaboran con el Centro de las llanuras meridionales también son vulnerables a la variabilidad del cambio y han implementado programas y actividades para ayudar a las partes interesadas a responder a los factores de perturbación provocados por el clima.

5.1 Servicio de Conservación de Recursos Naturales
Las actividades más vulnerables al clima
La agricultura en las llanuras meridionales de los Estados Unidos enfrentará una presión continua a causa de los efectos del cambio climático. Los desafíos más apremiantes son los que enfrenta la industria en relación con el aumento de la frecuencia, la duración y la gravedad de las sequías, como así también los efectos negativos relacionados con el aumento de las inundaciones repentinamente como resultado de eventos de lluvia más intensos.

\(^{18}\) El Plan de Adaptación al Cambio Climático de 2014 del USDA incluye aportes de 11 agencias y oficinas del USDA. Proporciona una evaluación detallada de la vulnerabilidad, repasa los elementos de la misión del USDA que se encuentran en riesgo debido al cambio climático, y expone las acciones y medidas específicas que se están tomando para fortalecer la resiliencia al cambio climático. Puede obtener más información aquí: http://www.usda.gov/oce/climate_change/adaptation/adaptation_plan.htm.
La capacidad de nuestro sistema de producción agrícola para resistir períodos de lluvias reducidas y aumento del calor, tanto en el mantenimiento de la producción de cultivos como en la proporción de forraje y agua adecuados para el ganado, es crucial para hacer frente a los efectos de un clima en constante cambio. La presión de pastoreo en respuesta al deseo de maximizar las ganancias durante las épocas de sequía también empeora estos problemas. Las llanuras meridionales siempre se han enfrentado a desafíos como la tasa de precipitaciones y el momento de las precipitaciones para mantener la producción agrícola. Mientras que las tierras de cultivo por irrigación siguen siendo abundantes sobre el acuífero de Ogallala, el acuífero se está reduciendo y los productores ya han comenzado a implementar el riego deficitario. El cambio climático aumenta la exposición de esta área del país a estos desafíos. Como resultado del cambio climático, hay una mayor probabilidad de ocurrencia de factores como la reducción en la producción de cultivos; el agua inadecuada para el ganado, tanto para el consumo como para la producción de forraje; y el potencial de aumento de la erosión cólica e hídrica del suelo. El flujo intermitente de nuestros ríos, riachuelos y arroyos también se verá afectado por una reducción de las lluvias, por la falta de humedad del subsuelo, y por los efectos de esto en el ciclo hidrológico, que afectarán tanto a la agricultura como al suministro municipal de agua.

En las llanuras meridionales siempre ha habido eventos de lluvias violentas. Los cambios en el clima que hemos estado viviendo han tenido como resultado un aumento de la posibilidad de eventos de lluvia aún más extremos que los que normalmente ocurren en el pasado. El aumento de erosión laminar, erosión por abarrancamiento y erosión en regueros debido a las intensas precipitaciones en tierras expuestas es una de las principales preocupaciones. Además, el riesgo de inundaciones repentinas y sus efectos en la propiedad, la infraestructura y la vida humana aumentan debido a las variaciones que el cambio climático producirá en nuestros patrones de lluvias. Los eventos de lluvias intensas también presentan desafíos adicionales relacionados con el aumento de la escorrentía de las tierras agrícolas y con el posible aumento de los niveles de turbidez, nutrientes y bacterias en forma de contaminación de fuentes no localizadas en la superficie del agua.

La producción agrícola sufrirá una presión adicional proveniente de factores como heladas fuera de temporada en el trigo de invierno; aumento de la exposición a especies invasoras y plagas; muerte de cultivos de verano, como el grano de sorgo, a causa de heladas tardías; y cambios en los eventos de lluvias que reducen la confiabilidad de las precipitaciones a fines de los meses de primavera y verano.

El NRCS actualmente cuenta con muchos programas implementados no solo mediante el Título de Conservación de la Ley Agrícola, sino también a través de programas no relacionados con esta ley, como los programas de Asistencia Técnica para la Conservación (CTA) y el Programa de Cuencas Hidrográficas Pequeñas creado mediante la Ley de derecho público 566 (PL 566) para ayudar a los productores a resolver estos problemas; sin embargo, aún no hay certezas respecto de si los niveles actuales de personal y de fondos para la agencia son adecuados para hacer frente a los desafíos que presentan los efectos del cambio climático para la producción agrícola. En los últimos años, se ha dedicado cada vez más dinero a objetivos de cumplimiento de programas que no están tan centrados en la planificación para la conservación, en la asistencia técnica externa al programa y a la planificación de cuencas hidrográficas a través de la PL 566. Además, los objetivos de cumplimiento de estos programas generalmente están dirigidos a los síntomas del cambio climático y prestan poca atención a la consideración de prácticas de conservación como forma de abordar el ecosistema total, con lo que se capturarián no solo los beneficios resueltos directamente por una práctica (reducción de la erosión del suelo mediante la conversión a siembra directa, por ejemplo), sino también los otros beneficios indirectos generados por estas prácticas (en el caso de conversión a siembra directa: mejora en la calidad del agua, reducción del uso de combustible, mejora en la salud del suelo y captura de carbono, como beneficios adicionales a la reducción de la erosión). Se necesitan recursos adicionales para abordar las crecientes preocupaciones relacionadas con las tierras y, a la vez, brindar un enfoque adicional para resolver estas cuestiones de manera tal que se reconozcan los beneficios totales generados por estas prácticas y que se busque maximizar el efecto positivo de la conservación en la totalidad de un ecosistema. También buscaremos la oportunidad de colaborar con otras agencias de nuestro sistema para maximizar los resultados positivos de todos los programas del USDA, al igual que buscaremos colaborar con aquellos...
programas administrados por otras agencias ambientales (algunos ejemplos son los programas de servicios públicos rurales dirigidos al financiamiento de agua limpia y otras iniciativas voluntarias para la limpieza del agua de otras agencias).

Programas para abordar los riesgos y las vulnerabilidades

El NRCS tiene muchos programas que pueden ser útiles para ayudar a los productores a ajustarse al clima cambiante. En primer lugar, podemos nombrar nuestra capacidad, a través de la Asistencia Técnica para la Conservación (CTA), de ayudar a los productores a identificar los desafíos que enfrentan debido a las presiones que sufren sus operaciones por causa del cambio climático. El conjunto de prácticas de conservación del NRCS contiene tecnologías y estrategias de eficacia comprobada para abordar los problemas de conservación, que se mantienen actualizadas a medida que se desarrollan nuevas tecnologías y estrategias. El NRCS brinda una red de oficinas locales y profesionales disponibles para ayudar a los productores a desarrollar, mediante el proceso de planificación, planes de conservación compuestos por prácticas y sistemas de conservación, que pueden tener como resultado paisajes que sean más resilientes a los extremos meteorológicos que el cambio climático exacerbará. Esto también les brindará una hoja de ruta que los guiará al programa de asistencia financiera adecuado para ayudarlos a implementar este plan.

El Programa de Incentivos para la Calidad Ambiental (EQIP), el Programa de Gestión de la Conservación (CSP) y otros programas dentro del Título de Conservación de la Ley Agrícola son herramientas valiosas para ayudar con la adaptación al clima cambiante ya que les brindan a los productores la asistencia financiera y el apoyo que necesitan para implementar en sus tierras los cambios necesarios para que se adapten a los extremos meteorológicos. Con frecuencia, estos cambios tienen precios prohibitivos a corto plazo para que un productor los adopte sin la asistencia de estas iniciativas. Además, el aspecto de planificación agrícola de programas como el CSP y el potencial que este programa brinda a los productores recompensándolos por una buena gestión de sus operaciones tienen, en forma integral, la capacidad de ayudar a la agricultura no solo a adaptarse a los resultados del cambio climático, sino a mitigar algunas de las causas subyacentes del fenómeno por medio de la captura de carbono y la prevención de las emisiones de gases de efecto invernadero, mediante la reducción del consumo de combustible y el aumento del uso de energía alternativa.

Otro programa que brinda una herramienta para hacer frente a los efectos del cambio climático es el Programa de Cuencas Hidrográficas Pequeñas creado de conformidad con la PL 566. Cuando observamos los objetivos establecidos originalmente para este programa en su ley orgánica, objetivos tales como protección de cuencas hidrográficas, mitigación de las inundaciones, mejoras en la calidad del agua, reducción de la erosión del suelo, abastecimiento municipal e industrial de agua, irrigación, gestión del agua, mejora de la fauna silvestre y acuática, hidroelectricidad y control de los sedimentos, notamos al instante que este programa puede ayudar al campo a adaptarse mejor a los desafíos creados por el cambio climático. La flexibilidad y la oportunidad de crear mayor resiliencia al cambio climático en una escala de cuenca hidrográfica como parte del programa de cuencas hidrográficas del USDA son casi ilimitadas. Los lineamientos de planificación e implementación del programa de Protección de las Cuencas Hidrográficas y Prevención de las Inundaciones establecen que las cuencas hidrográficas son áreas de hasta 250 000 acres (101 171 hectáreas). Aunque esta escala es menor que la de otros límites basados en cuencas hidrográficas, como las iniciativas de la bahía de Chesapeake o la cuenca hidrográfica del Misisipi, los beneficios que se proporcionan en las cuencas hidrográficas de menor tamaño son importantes y se pueden ampliar. Además, el Título de Conservación de la Ley Agrícola le proporciona al gobierno federal la autoridad de proporcionar fondos equivalentes a un porcentaje de entre 65 % y 35 % de los fondos locales y estatales para la rehabilitación de estructuras envejecidas contra inundaciones construidas como parte de este programa, y los nuevos lineamientos emitidos por la sede del NRCS en Washington D.C. permiten la participación en la totalidad del costo necesario para expandir una estructura existente a fin de construir una reserva. Este cambio en las reglas ha convertido a este programa en una herramienta mucho mejor para asistir en la adaptación al cambio climático,
posibilitando el abastecimiento de nuevos suministros de agua a varias de nuestras comunidades y protegiendo, a la vez, las vidas y la propiedad contra los efectos de las inundaciones repentinas.

Existen oportunidades adicionales a través del programa de Subvención para la Innovación en la Conservación (CIG), el Programa de Asociación Regional para la Conservación (RCPP) y la Iniciativa Nacional para la Calidad del Agua, tanto para la adaptación de la agricultura al cambio climático, como para la capacidad que los productores agrícolas tienen para ayudar a abordar desafíos como el aumento de contaminación de fuentes no localizadas, la reducción del caudal de los arroyos, los niveles de gases de efecto invernadero en la atmósfera y la reducción de los hábitats para la vida silvestre.

También existe la posibilidad de combinar las capacidades de los programas bajo el auspicio del NRCS y de otras agencias similares, tanto dentro como fuera del USDA. Muchos estados ya han explorado opciones para asociarse con iniciativas voluntarias de otras agencias similares, como el programa de la Ley de Agua Limpia 319, a fin de maximizar los beneficios para la calidad del agua. Se podría alentar a las comunidades que ya están implementando mejoras para abordar los problemas de calidad del agua a que consideren prácticas de conservación en cuencas hidrográficas por encima de suministros de agua potable, como alternativas a la construcción de plantas de tratamiento del agua, con lo cual no solo se abordarían las inquietudes relacionadas con la contaminación de fuentes no localizadas, sino que se trataría junto con los productores para adoptar prácticas que los ayuden a adaptarse al cambio climático. El NRCS también podría explorar la posibilidad de trabajar con otras agencias combinando algunas mejoras específicas logradas a través de los programas del Título de Conservación de la Ley de Agricultura con prácticas que ayuden a la agricultura a adaptarse y a mitigar el cambio climático.

El NRCS también podría seguir trabajando con la Agencia de Servicio Agrícola (FSA) para asegurarse de que cualquier tierra tomada del Programa de Reservas para la Conservación (CRP) se mantenga de una manera diseñada de forma tal que se maximicen los beneficios de conservación sobre las tierras. Los factores económicos podrían determinar que algunos acres del CRP deben regresar a las actividades de producción. El NRCS puede centrar los esfuerzos a través de la CTA y otros programas del NRCS para minimizar cualquier efecto negativo que este cambio pudiera tener.

Todos los conceptos nombrados anteriormente se adaptan directamente a la Iniciativa de Salud del Suelo que el NRCS está implementando en forma activa en todo el país. Mejorar la salud de nuestros suelos en los Estados Unidos es la clave para ayudar a la agricultura a mitigar el cambio climático y a adaptarse a este. Desde la primera vez que se usó un arado hasta el presente, las tierras cultivables de Estados Unidos han perdido entre un 60 % y un 80 % de la materia orgánica que estaba presente en el momento del asentamiento. Esto es importante porque la materia orgánica es lo que alimenta a la comunidad microbiana debajo del suelo, y porque esta comunidad de insectos, bacterias y hongos es la que mantiene unido el suelo, permite la transferencia de agua a través de la estructura del suelo, captura el dióxido de carbono en la tierra y eso hace que los nutrientes estén más disponibles para los cultivos en crecimiento.

De acuerdo con la investigación de la Universidad Estatal de Kansas, tan solo un 1 % de materia orgánica en el suelo puede triplicar la capacidad de retención del agua de dicho suelo. Eso equivale, en promedio a 25 000 galones (94 635 litros) adicionales de agua disponible por acre para los cultivos en crecimiento. La Universidad Estatal de Oklahoma ha estimado que este aumento en la capacidad de retención del agua del suelo en Oklahoma es equivalente a una lluvia de 3 pulgadas (76 mm). Todo esto se obtendría aumentando la capacidad del suelo para retener el agua cuando llueve y reduciendo la cantidad de agua que se pierde con la evaporación durante los meses de verano. A través de la conversión de los cultivos de labranza convencional a sistemas de cultivo de siembra directa que también incorporan cultivos de cobertura, podemos aumentar ampliamente la tasa de infiltración de agua en el suelo de la granja y, al mismo tiempo, reducir la pérdida de humedad por evaporación cuando la tierra se labra y queda expuesta al sol. Si logramos retener la humedad que la tierra obtiene cuando llueve y reducir la cantidad de agua que se pierde a causa del calor, podemos ayudar a nuestros sistemas de cultivo a soportar mejor los ciclos de sequía que se ven exacerbados por el cambio climático, mientras proporcionamos más humedad para los cultivos en crecimiento durante los meses de verano. Este aumento de la humedad del suelo también ayuda a restaurar el equilibrio del ciclo general del agua que, a su vez, ha demostrado elevar el flujo promedio de la corriente, con lo que más cantidad de agua se encuentra disponible para el uso humano y los hábitats de la fauna silvestre.
Las mismas prácticas que realizariamos en la tierra para lograr este aumento en la humedad del suelo también tienen el beneficio adicional de reducir la erosión del suelo provocada por los eventos de lluvias intensas, otro desafío que está aumentando debido al cambio climático. Al reducir o eliminar la labranza a través de una producción de cultivos con labranza mínima y con siembra directa, y al incorporar cultivos de cobertura en rotación con cultivos tradicionales como el trigo de invierno, podemos reducir en gran medida el efecto de la erosión laminar, la erosión por abarrancamiento y la erosión en regueros en las tierras de las granjas y, a la vez, reducir la cantidad de escorrentía de las tierras agrícolas, con lo que no solo protegemos nuestro suelo sino que también reducimos la contaminación de fuentes no localizadas en nuestros arroyos, ríos y lagos.

Además, estos aumentos mencionados de materia orgánica del 1% pueden, en promedio, proporcionar nutrientes adicionales por hasta un valor de $700 por acre para los cultivos en crecimiento, de acuerdo con la información de la Universidad Estatal de Ohio. Se ha estimado que alrededor de un 60% del fertilizante aplicado actualmente a la tierra de cultivo se desperdicia debido a la falta de una comunidad microbiana saludable en el suelo. Al mejorar la salud del suelo podemos ayudar a las plantas a absorber en forma más eficaz los nutrientes disponibles en la tierra, mientras reducimos la necesidad de fertilizante químico, especialmente a través de la incorporación de cultivos de cobertura leguminosa que restauran el nitrógeno al suelo en forma natural, y a través de la inclusión de especies de plantas adicionales en mezclas de cultivos de cobertura que extraen otros nutrientes disponibles del suelo, como el fósforo, y hacen que estén disponibles para las plantas que siguen al cultivo de cobertura en la rotación. Este aumento, a su vez, puede ayudarnos a mantener los rendimientos actuales y encierra el potencial de ayudarnos a aumentar los rendimientos en el futuro para ayudar a alimentar a una población en constante crecimiento.

La conversión de la agricultura convencional con labranza a una agricultura de siembra directa y la incorporación de cultivos de cobertura en rotación con los cultivos tradicionales, como el trigo de invierno, no solo representan una gran esperanza para la adaptación de nuestro sistema agrícola al cambio climático, sino que estas mismas prácticas también tienen el potencial de ayudar a reducir los niveles generales de dióxido de carbono en la atmósfera. De acuerdo con una investigación realizada por la Universidad Estatal de Kansas, la producción de cultivos por siembra directa en las llanuras meridionales puede capturar, en promedio, alrededor de 0,5 toneladas métricas de carbono por acre al año. Aunque el tamaño de este posible sumidero de carbono aún no es claro, lo que sí es claro es que un cambio en las prácticas agrícolas para incluir un mayor uso de cultivos por siembra directa y cultivos de cobertura puede reducir los niveles de dióxido de carbono y mejorar, a la vez, la salud del suelo, mientras nos ayuda a adaptarnos a los extremos meteorológicos.

El carbono orgánico compone alrededor del 60% de la materia orgánica del suelo. Cuando se aumenta la materia orgánica en el suelo, la salud del suelo se restaura. Cuando se restaura la salud del suelo, se ayuda a la agricultura a adaptarse al cambio climático. Cuando se ayuda a la agricultura a adaptarse al cambio climático, se ayuda a mejorar la calidad del agua, a mejorar el hábitat de la fauna silvestre y a aumentar la fertilidad del suelo para, posiblemente, aumentar el rendimiento y, a la vez, ayudar a reducir el nivel de exceso de dióxido de carbono en la atmósfera.

Todos estos resultados se pueden lograr usando los programas existentes mencionados anteriormente si se cuenta con los fondos adecuados, si hay flexibilidad para realizar el trabajo necesario a fin de cumplir los objetivos y si el personal en todos los niveles del NRCS tiene una clara comprensión de la forma en que sus programas interactúan con el problema del cambio climático; el personal también debe tener el conocimiento básico necesario para identificar oportunidades que maximicen los beneficios de su trabajo, tanto para la comunidad agrícola como para el beneficio general de la salud del medio ambiente.
5.2 Servicio Forestal de los Estados Unidos

El enfoque del Servicio Forestal para la adaptación al cambio climático abarca estrategias específicas al clima en toda la agencia y esfuerzos directos de cada programa en particular para integrar las políticas y la orientación en relación con el clima. El cambio climático es uno de los muchos factores de cambio que se deben considerar en el mantenimiento de los ecosistemas de bosques y praderas. El Servicio Forestal está involucrado en investigación, traducción y entrega de información y herramientas técnicas para su uso en bosques y praderas de propiedad pública y privada. La rama de Investigación y Desarrollo del servicio Forestal es el principal grupo interno de investigación de bosques y recursos naturales del USDA. La rama de Silvicultura Estatal y Privada (S&PF) es la líder federal en la provisión de asistencia técnica y financiera para los propietarios de tierras y administradores de recursos para ayudar a conservar, proteger y mejorar los bosques no federales del país. El Sistema Forestal Nacional se compone de 193 millones de acres (78 millones de hectáreas) de bosques y praderas nacionales, y generalmente es la «primera línea» de comunicación entre la agencia y la gente. El informe de Evaluación Climática Nacional del Servicio Forestal del USDA indica que las épocas secas más prolongadas y las sequías que duran varios años se convertirán en disparadores de múltiples factores de perturbación (p.ej., incendios, insectos, especies invasoras y combinaciones de estos elementos). Estas fuentes de perturbaciones cambiarán la estructura y el funcionamiento de los ecosistemas en millones de acres en un corto período.

Características

El Servicio Forestal es responsable de administrar 1 265 804 acres (512 252 hectáreas) de bosques nacionales y praderas nacionales en la región del Centro Climático de las Llanuras Meridionales (Kansas, Oklahoma y Texas). Dentro de estas tierras, existe la posibilidad de que ocurran diversos problemas debido al cambio climático. Los recursos naturales dentro del Centro de las llanuras meridionales incluyen cinco bosques nacionales y seis praderas nacionales del Servicio Forestal del USDA. El Bosque Nacional Ouachita en la región este de Oklahoma, y los bosques nacionales Angelina, Davy Crockett, Sabine y Sam Houston, en Texas, ocupan casi un millón de acres (404 685 hectáreas). Solo en Texas hay alrededor de 637 000 acres (257 784 hectáreas) de bosques nacionales y cinco bosques estatales administrados por el Servicio Forestal de Texas dentro de la Universidad Texas A&M que ocupan un total de 7306 acres (2956 hectáreas). El Bosque Nacional Ouachita tiene alrededor de 350 000 acres (141 639 hectáreas) en Oklahoma. En el Centro de las Llanuras Meridionales, las Pradera Nacional Cimarron de Kansas, las praderas nacionales Black Kettle y Rita Blanca de Oklahoma y Texas, y las praderas nacionales McClellan Creek, Caddo y Lyndon B. Johnson en Texas, en total, ocupan más de un cuarto de millón de acres (101 171 hectáreas). Sin embargo, las praderas nacionales no son extensiones sólidas y continuas, sino que se encuentran intercaladas entre otras tierras de propiedad del gobierno federal, del gobierno estatal y privada.

Una de las sequías más dañinas que afectaron a las praderas y a las tierras de cultivo de Estados Unidos fue la sequía de la década de 1930, conocida como Dust Bowl (cuenca de polvo). Nuestras praderas nacionales nacieron cuando el gobierno federal compró y restauró estas tierras dañadas. El efecto directo de la sequía generalmente se recuerda como un efecto tanto agrícola como socioeconómico, que causó daños a los cultivos, al ganado y a los humanos. La reducción de la cubierta vegetal y el aumento de tierra expuesta condujeron a tormentas de polvo durante momentos de vientos fuertes, lo que tuvo como resultado la pérdida de la capa superficial del suelo. La depresión agrícola resultante contribuyó al cierre de bancos, la pérdida de negocios, el aumento del desempleo y otras penurias físicas y emocionales de la Gran Depresión. Se aprendieron muchas lecciones de resiliencia y adaptación en respuesta a los efectos calamitosos del Dust Bowl. Estas estrategias aprendidas ayudaron a reducir la vulnerabilidad de la región a las condiciones futuras de sequía; sin embargo, aún existen riesgos asociados con nuestro clima cambiante.

Riesgos

Entre las actividades y los esfuerzos del Servicio Forestal del USDA que son más vulnerables en las llanuras meridionales se incluye lo siguiente:
Gestión de los ecosistemas de bosques y praderas nacionales. Entre los factores que impulsan este problema que podemos observar o anticipar se incluye lo siguiente:

- Cambios en las distribuciones y las poblaciones animales y vegetales.
- Expansión de especies invasoras.
- Invasión de plantas leñosas.
- Modificación de los regímenes de incendios.
- Modificación del potencial de supresión de incendios.
- Aumento de pérdida de viviendas, costos de supresión, y lesiones y muertes humanas como resultado de los incendios en las Grandes Llanuras.
- Reducción del forraje para las especies silvestres.
- Reducción del forraje para el ganado.
- Aumento de la muerte de la vegetación por causa de las condiciones de sequía.
- Reducción de los niveles freáticos, reducción de las millas de arroyos intermitentes, reducción de los acres de agua superficial.
- Cambios en la conectividad de los cursos de agua, lo cual se traduce en pérdida de hábitats y reducción del intercambio genético para las poblaciones nativas de peces.
- Aumento de probabilidades de brotes de gorgojo descortezador y mortalidad de árboles.

Todas las actividades que requieren recursos hídricos, incluidas las actividades de recreación, pastoreo, gestión de la fauna silvestre, recolección de materiales forestales (incluida la leña) y provisión de suministros de agua potable a las comunidades circundantes.

- Recursos hídricos en riesgo debido al cambio en los regímenes hidrológicos, al aumento de la demanda de evaporación y a los incendios catastróficos (con la consiguiente erosión y sedimentación del suelo).
- Cursos de agua en riesgo por los aumentos de temperatura.

- Mantenimiento de diversos sistemas ecológicos de alta integridad.

- Protección de la propiedad privada en la interfaz urbano-forestal.

- Se anticipa que se verán afectadas las actividades de recreación debido a las restricciones y cierres por incendios, y a la duración prolongada de la temporada de incendios.

- Gestión de la limpieza del aire en riesgo debido a la pérdida de árboles prevista y al aumento de las emisiones provenientes de incendios.

- La cuantificación de la interacción de las influencias ambientales (p. ej., la sequía) y las estrategias de gestión, como el pastoreo y el uso de herbicidas, con la frecuencia y la estacionalidad de los incendios es problemática debido a la falta de estudios en esta región. Esto presenta desafíos únicos para los administradores que buscan entender, explicar y justificar las estrategias de gestión. Esto es especialmente cierto debido a la concientización ambiental cada vez mayor que exhibe el público en general y al aumento creciente de bienes y servicios de las praderas.

Programas para abordar los riesgos y las vulnerabilidades

Los programas y medidas implementados para hacer frente a los riesgos y las vulnerabilidades del cambio climático incluyen investigación, evaluaciones y herramientas para proporcionar una base científica para las actividades de gestión, y una gestión activa de las tierras por parte del Sistema Forestal Nacional:

Investigación

- La Estación de Investigación de las Montañas Rocosas del Servicio Forestal del USDA realizó una revisión y una evaluación de necesidades que sintetiza los conocimientos sobre los efectos del cambio climático sobre la fauna y la flora nativas de muchas de estas praderas, montes y desiertos en el interior del oeste estadounidense, lo cual incluye partes de la región de las llanuras meridionales (Finch, 2012). Una herramienta basada en la web que permite a los administradores evaluar la vulnerabilidad de las especies al cambio climático complementa esta evaluación (Bagne et al., 2011).

- En la porción oriental de las llanuras meridionales y en los bosques de pino y madera noble de Arkansas y Texas, los estudios se enfocan en los efectos del cambio climático, la gestión forestal...
y las plagas de insectos en la fauna silvestre y en el hábitat de esta, a fin de proporcionarles a los administradores mejores herramientas para restaurar y gestionar las poblaciones de fauna.

- Se está llevando a cabo una investigación experimental a largo plazo en las Praderas Nacionales Kiowa, Pawnee y Cimarron sobre los efectos de la gestión del ganado, los incendios, las sequías y el cambio climático en los ecosistemas de pradera.
- Mediante la investigación, se ha desarrollado (y actualmente se está probando) una herramienta de apoyo para las decisiones interactivas que modela los efectos del clima en propiedades con lecho de combustible y los efectos ecológicos asociados del clima en las praderas de las Grandes Llanuras.

Gestión

- Las prácticas de gestión dentro de las praderas y bosques nacionales de la región de las llanuras meridionales incluyen el raleo, el incendio prescrito y tratamientos de restauración, como así también el uso de incendios naturales para lograr los objetivos de restauración.
- Los proyectos de reducción del combustible a pequeña escala se implementan en unidades administrativas.
- Las actividades continuas sobre la vegetación, incluidos los incendios controlados, el retiro mecanizado de arbustos y la recolección de madera, con fines de mejora (restauración) de la estructura vegetal, reducen la vulnerabilidad que tiene la vegetación a los incendios catastróficos y mejoran la resiliencia de los ecosistemas a las perturbaciones (incluidas aquellas causadas por el cambio climático).
- Demora en la llegada del ganado y retiro o reducción de los niveles permitidos de existencias, sobre la base de las precipitaciones recibidas.
- Restricciones o cierres por posibilidad de incendios para reducir el riesgo de incendios catastróficos en condiciones de sequía.
- Colocación estratégica de estructuras de agua artificiales para su uso por parte de la fauna.
- Gestión del pastoreo para mejorar el estado de la vegetación ribereña.
- Mejoras ribereñas para reducir los efectos sobre las temperaturas de los arroyos y sobre la resiliencia de los canales de agua a los eventos climáticos extremos.

Necesidades futuras

- Un aumento de la cantidad de praderas en conservación y gestión del pastoreo para proporcionar parches lo suficientemente grandes con diversas características estructurales y compositivas necesarias para la fauna silvestre.
- Identificación de varias áreas de praderas continuas, incluidas las porciones de tierras federales, para destinarlas a ser paisajes modelo para la creación y el mantenimiento de la heterogeneidad estructural y compositiva a una escala relevante para la fauna, para el "aprendizaje práctico", para la generación de lineamientos de buena gestión y para el control del éxito de las medidas de gestión y de políticas.
- Uso de una variedad de herramientas de política y gestión a escala del paisaje para hacer frente a los factores de perturbación que enfrentan las praderas tanto en el momento presente como en un futuro, a la luz del cambio climático.
- Fomentar las políticas agrícolas a nivel nacional, estatal y de los condados con el objetivo de desarrollar programas que promuevan valores tanto ecológicos como económicos.

5.3 Agencia de Servicio Agrícola

Con más de 321 oficinas estatales y de condados a lo largo de la región de las llanuras meridionales compuesta por tres estados, la Agencia de Servicio Agrícola es el rostro del USDA para los productores que participan en los programas de conservación y energía, cultivo de productos básicos, asistencia ante desastres y préstamos agrícolas que el USDA administra. En la región de las llanuras meridionales, la producción de alimentos y la protección de nuestros suelos y de nuestros recursos hídricos son extremadamente vulnerables a las fluctuaciones del clima.
Las actividades más vulnerables al cambio climático
La producción de alimentos es la actividad más vulnerable y más importante que se ve afectada por el cambio climático. El cambio y la variabilidad del clima afectan tanto a la producción de alimentos como a la seguridad económica de los productores de alimentos.

Programas para abordar los riesgos y las vulnerabilidades
Las tres medidas más importantes para una seguridad alimentaria continua son la investigación, los programas de asistencia ante emergencias, y los programas de red de seguridad económica general que se aseguran de que se continúen produciendo alimentos a niveles mayores para alimentar a una población mundial en constante crecimiento.

- La inversión en la investigación es fundamental en dos áreas. En 1.er lugar, es necesaria para identificar y mejorar las tecnologías que brindan la energía necesaria para la actividad humana y, a la vez, minimizan el efecto de estas en el cambio climático. En 2.° lugar, es necesario realizar inversiones a corto y a largo plazo en las investigaciones que se enfocan en la mejora genética de plantas y animales para que se adapten al cambio climático. Esto puede incluir organismos modificados que pueden prosperar y producir alimentos durante épocas de sequía, calor u otras perturbaciones provocadas por el cambio climático.

- Los Programas de Asistencia ante Emergencias que proporcionan el USDA/la FSA deben continuar, ya que responden y asisten a los productores en momentos de cambios meteorológicos dramáticos. El Programa de Conservación de Emergencia (ECP), por ejemplo, asiste a los productores en el acceso al agua durante las sequías o en la reconstrucción de vallas después de incendios, inundaciones y otros desastres naturales. Otro ejemplo es el Programa de Forraje para Ganado, que brinda asistencia crítica para la adquisición de alimentos en condiciones de desastres. El Programa de Indemnización para Ganado (LIP) es otro programa importante para situaciones de desastres, y brinda asistencia a los productores que han sufrido bajas en sus rebaños a causa de las condiciones meteorológicas graves. La disponibilidad de préstamos directos, garantizados y de emergencia de la FSA es crucial para brindar financiamiento a los productores después de desastres meteorológicos y económicos. Otros programas importantes incluyen el Programa de Asistencia para Cosechas no Aseguradas por Desastre (NAP) y el Programa de Protección del Mercado Lechero (MPP).

- Los programas de red de seguridad general que se brindan a través del USDA/la FSA proporcionan estabilidad económica en momentos de incertidumbre natural y económica. El Programa de Cobertura de Riesgos Agrícolas y el Programa de Cobertura por Pérdidas de Precio proporcionan una red de seguridad de los ingresos crucial que complementa la asistencia de los programas antes mencionados para garantizar un suministro seguro de alimentos para el país y el mundo.

5.4 Desarrollo rural
La agencia de Desarrollo Rural (RD) apoya a las comunidades por medio de préstamos, garantías de préstamos y subsidios. Para algunos de los programas de la RD, la agencia impone derechos de retención o establece otros intereses de garantía sobre los establecimientos y la infraestructura relacionada en áreas que podrían verse afectadas por cambios hidrológicos y aumentos del nivel del mar como resultado de efectos tales como las inundaciones o la erosión. Además, muchos modelos de cambio climático predicen una mayor frecuencia y gravedad de eventos meteorológicos tales como tornados y huracanes, que pueden dañar las instalaciones y la infraestructura de los servicios públicos. Por estas razones, el cambio climático representa un riesgo para los activos de estas agencias y de las comunidades a las que brindan servicios. Dentro de la región de las llanuras meridionales, se prevé la ocurrencia de eventos meteorológicos más extremos, como sequías, inundaciones, tormentas eléctricas intensas, tormentas tropicales, huracanes y marejadas ciclónicas en las costas. También se anticipa que los vientos intensos causarán lo siguiente: 1) interrupción de la electricidad y de otros tipos de suministro de energía; 2) aumento del daño a las...
estructuras/infraestructuras por causa de las inundaciones, y 3) aumento de la demanda de suministro de agua.

La agencia de Desarrollo Rural ha implementado servicios para administrar las distintas áreas de los programas, incluido el Servicio de Vivienda Rural, el Servicio de Negocios y Cooperativas Rurales y los Servicios Públicos Rurales.

Servicio de Vivienda Rural

El Servicio de Vivienda Rural (RHS) administra programas que brindan asistencia financiera (préstamos y subsidios) para viviendas de calidad e instalaciones en la comunidad a residentes de áreas rurales dentro de todas las regiones del Centro Climático.

El RHS implementará las medidas de prevención que se presentan a continuación a fin de reducir los efectos del cambio climático y aumentar la resiliencia a los efectos adversos que se estima que causarán las inundaciones, las marejadas ciclónicas, los huracanes, las tormentas tropicales y otros patrones meteorológicos graves que podrían afectar las estructuras financiadas mediante programas del RHS.

1) El RHS seguirá proporcionando entrenamiento al personal en los sitios de las instalaciones/infraestructura durante la vida útil de la infraestructura (entre 30 y 50 años en algunos casos), en ubicaciones donde los efectos del cambio climático no afectarán en forma adversa las instalaciones o el entorno circundante.

2) El RHS continuará teniendo en cuenta para la planificación a largo plazo los efectos del aumento del nivel del mar, de otras posibles inundaciones y los efectos meteorológicos graves.

3) El RHS seguirá proporcionando fondos para los siguientes programas que han sido diseñados para reducir la necesidad de combustibles fósiles, promover la energía renovable y aumentar la eficiencia energética a fin de reducir los efectos del cambio climático:

- Iniciativa para la Eficiencia Energética en Viviendas Multifamiliares
- Administrador de Cartera de Viviendas Multifamiliares, Evaluación de Necesidades de Capital/Uso de Servicios
- Cumplimiento de la Ley de Independencia y Seguridad Energética (afecta la nueva construcción de viviendas unifamiliares)
- Instalación de energía renovable en el sitio de las viviendas multifamiliares de 100 megavatios de capacidad como parte del Plan de Acción Climática para el año 2020

Servicio de Negocios y Cooperativas Rurales

El Servicio de Negocios y Cooperativas Rurales (RBS) administra programas que reducen la necesidad de combustibles fósiles, promueven el uso de biomasa y energía renovable, y aumentan la eficiencia energética dentro de todas las regiones del Centro Climático. El Programa de Energía Rural para Estados Unidos reduce la demanda en las plantas de carga base por medio de la inversión en eficiencia energética y energía renovable. Una menor demanda de carga base conserva el agua y ayuda a reducir los gases de efecto invernadero que contribuyen al cambio climático. Las inversiones en energías renovables pueden proporcionar una resiliencia adicional al distribuir los recursos energéticos.

El RBS está invirtiendo en combustibles alternativos, químicos renovables, biogás y conservación de aguas residuales, y está recolectando los remanentes del raleo forestal que pueden servir como combustible para avances en biocombustibles.

Servicios Públicos Rurales

La agencia de Servicios Públicos Rurales (RUS) administra programas que proporcionan agua potable limpia y segura además de plantas de aguas sanitarias, banda ancha, telecomunicaciones, y generación y distribución de energía eléctrica en todas las regiones del Centro Climático.
Los siguientes programas o medidas ayudarán a abordar la resiliencia y a reducir el efecto de sequías, inundaciones y otros desastres naturales, además de aumentar la eficiencia energética:

- **Subsidio de la Asociación Nacional de Agua Rural (NRWA):** programa de eficiencia energética diseñado para promover las prácticas de eficiencia energética en sistemas hídricos y de tratamiento de aguas residuales pequeños. Realiza evaluaciones de energía, recomienda prácticas y tecnologías para la eficiencia energética y brinda apoyo para el logro de las recomendaciones.

- **Memorando de acuerdo entre la Agencia de Protección del Medio Ambiente de los Estados Unidos y el Departamento de Agricultura de los Estados Unidos: Servicios Públicos Rurales de Desarrollo Rural – Promoción de sistemas hídricos y de tratamiento de aguas residuales rurales y sostenibles.** Los objetivos son aumentar la sostenibilidad del agua potable y de los sistemas de tratamiento de aguas residuales en todo el país para garantizar la protección de la salud pública, la calidad del agua y las comunidades sostenibles, a fin de garantizar que los sistemas rurales tengan una base sólida para hacer frente a los desafíos del siglo XXI, y ayudar a los sistemas rurales con la implementación de estrategias y herramientas innovadoras que les permitan lograr una sostenibilidad a corto y a largo plazo en la gestión y las operaciones.

- **Subsidios de Asistencia Hídrica de Emergencia para la Comunidad (ECWAG):** asiste a las comunidades rurales que han sufrido una importante disminución de la calidad o la cantidad de agua potable debido a una emergencia, o en las cuales se considera inminente dicha disminución, a fin de que obtengan o mantengan las cantidades adecuadas de agua para cumplir con los estándares establecidos por la Ley de Agua Potable Segura. Se considera que las emergencias incluyen, sin limitarse a estos, incidentes como las sequías, los terremotos, las inundaciones, los tornados, los huracanes, los brotes de enfermedades o los derrames, filtraciones o vertidos químicos.

- **Programa Eléctrico - Programa de Préstamos para la Eficiencia y la Conservación Energética (EECLP):** el programa existe «con el objetivo de ayudar a los prestatarios de energía eléctrica a implementar una gestión orientada a la demanda, programas de eficiencia y conservación energética, y sistemas de energía renovable autónomos y conectados a las redes». Los objetivos del programa incluyen lo siguiente: (1) Aumento de la eficiencia energética a nivel del usuario final; (2) modificación de la carga eléctrica para que haya una reducción en la demanda general del sistema; (3) coordinación de un uso más eficiente de las instalaciones existentes de distribución, transmisión y generación eléctrica; (4) atracción de nuevos negocios y creación de nuevos empleos en comunidades rurales mediante la inversión en eficiencia energética; y (5) fomento del uso de combustibles de energía renovable ya sea para la gestión orientada a la demanda o para la reducción del uso de combustibles fósiles tradicionales dentro del territorio en el que se brindan los servicios.

- **Principios, requisitos y lineamientos (PR&G):** la aplicación en el futuro cercano de los PR&G revisados a la planificación de programas hídricos y de tratamiento de aguas residuales de RUS incluirá la consideración de los efectos del cambio climático y los efectos sobre el cambio climático, entre otros factores.

- **Documento de planificación de la adaptación al cambio climático:** este documento de junio de 2012 se aplicaría a las tres agencias de RD. El plan se preparó como apoyo a los esfuerzos del departamento para responder a la orden ejecutiva EO 13514 (Liderazgo Federal en el Desempeño Ambiental, Energético y Económico), al igual que a la norma departamental DR 1070-001. En el documento de planificación se discute el aumento de esfuerzos en la evaluación de riesgos y se identifican 5 acciones específicas relacionadas con la planificación y la adaptación al cambio climático.

- **Estándares y materiales aprobados para el diseño de ingeniería:** el programa eléctrico de RUS concibe un aumento de la incorporación de los efectos relacionados con el cambio climático en su revisión de los estándares y los materiales para la infraestructura financiada por RUS. Algunos
Región de las llanuras

prestatarios, por ejemplo en áreas costeras y en las Grandes Llanuras, ya han recibido aprobación por parte de la agencia para postes y líneas eléctricas más resistentes.

5.5 Agencia de Gestión de Riesgos

La Agencia de Gestión de Riesgos (RMA) proporciona una variedad de productos de seguro sensatos desde el punto de vista actuarial, relacionados con los cultivos y el ganado para ayudar a los agricultores y a los ganaderos a gestionar los riesgos relacionados con la producción agrícola. Se les proporciona cobertura contra posibles pérdidas de producción agrícola causadas por peligros naturales como sequías, humedad excesiva, granizo, viento, huracanes, tornados, rayos, insectos, etc. En 2014, el programa federal de seguros para los cultivos les proporcionó a los productores agrícolas de EE. UU. más de $109 800 millones como protección por productos básicos agrícolas. Estas pólizas brindan estabilidad financiera a los productores agrícolas y a las comunidades rurales, y frecuentemente son exigidas por los prestamistas.

Como el cambio climático es un proceso que está en curso, el panorama de riesgos para la producción agrícola también atravesará cambios constantes, p. ej., algunas amenazas pueden ocurrir con una mayor (o una menor) frecuencia o gravedad. El cambio climático también fomentará respuestas de adaptación por parte de los productores, como adoptar nuevas prácticas de producción, plantar nuevas variedades o cambiar las ubicaciones de las operaciones agrícolas.

La RMA se esfuerza continuamente para mejorar la eficacia de los programas refinando las ofertas de seguros de manera que se reconozcan los cambios en las prácticas de la producción y, en los casos en los que corresponde, ajustando los parámetros del programa (p. ej., tarifas de las primas, fechas de plantación, etc.) dentro de cada condado para reconocer los cambios estructurales a los riesgos de los cultivos en esas áreas. A ese respecto, la RMA monitorea la investigación sobre el cambio climático y, en la medida que surgen nuevos cambios en el clima a lo largo del tiempo, actualiza estos parámetros del programa para reflejar tal adaptación u otros cambios. Además, la RMA actualiza las normas de ajuste de pérdidas, las normas de suscripción y otros materiales del programa de seguros para garantizar que sean apropiados para las tecnologías de producción mayoritarias.

En la región del Centro Climático de las Llanuras Meridionales, la oficina regional de la RMA en Topeka, Kansas, administra los programas de seguros para cultivos de Kansas. La oficina regional de la Ciudad de Oklahoma, Oklahoma, administra los programas de seguros para cultivos en Oklahoma y Texas.

En el año 2010, la responsabilidad a nivel nacional por seguros para cultivos de RMA (grupo de pólizas) fue de $78 000 millones. En 2014, la responsabilidad a nivel nacional de RMA aumentó a $109 800 millones. Kansas, Oklahoma y Texas representaron más de $7400 millones en concepto de responsabilidad en 2010, y en 2014 la responsabilidad aumentó a más de $10 500 millones. El grupo de pólizas de seguros para cultivos federales en la región de las llanuras meridionales se compone de cultivos extensivos como algodón, maíz, cacahuetes, soja, granos de trigo, trigo; pastizales, praderas y forraje; plantas de vivero, girasoles, caña de azúcar y cultivos especializados como pacanas, duraznos, cítricos y árboles de cítricos, y otros cultivos importantes para los agricultores y los ganaderos en esta región de los EE. UU.

A lo largo de los últimos cinco años (2010-2014) la participación en el programa federal de seguros para cultivos en las llanuras meridionales ha aumentado:

- Kansas tiene la mayor responsabilidad en las llanuras meridionales: La responsabilidad total aumentó desde $3500 millones en 2010 hasta más de $4800 millones en 2014. En 2014, los cultivos con el mayor riesgo de responsabilidad fueron el trigo, con una responsabilidad de $1680 millones; seguido por el maíz, con una responsabilidad de $1630 millones; y la soja, con una responsabilidad de $935 millones.
- La responsabilidad total de Texas aumentó desde $3200 millones en 2010 hasta más de $4700 millones en 2014. En 2014, los cultivos con el mayor riesgo de responsabilidad en Texas...
fueron el algodón, con una responsabilidad de $2000 millones; seguido por el maíz, con una responsabilidad de $793 millones; el trigo, con una responsabilidad de $527 millones; y los pastizales, praderas y forraje, con una responsabilidad de $436 millones.

- La responsabilidad total de Oklahoma aumentó desde $669 millones en 2010 hasta más de $993 millones en 2014. En 2014, los cultivos con el mayor riesgo de responsabilidad en Oklahoma fueron el trigo, con una responsabilidad de $583 millones; seguido por el maíz, con una responsabilidad de $121 millones; y el algodón, con una responsabilidad de $82 millones.

Los cinco programas de cultivo con el mayor riesgo de responsabilidad en 2014 para el programa federal de seguros para cultivos en la región del Centro Climático de las Llanuras Meridionales son el algodón, el trigo, el maíz, la soja, y los pastizales, praderas y forraje.

Vulnerabilidades en las llanuras meridionales

Kansas

- La variabilidad en el clima ha causado graves inundaciones a lo largo del río Misuri y sus afluentes en los últimos años, especialmente la inundación de 2011.
- Sequía importante en los últimos años, que comenzó en 2011. Esto ha afectado tanto a la producción no irrigada como a la irrigada en la región occidental de Kansas, la región occidental de Nebraska y la región oriental de Colorado.

Para hacer frente a estos riesgos en Kansas, la RMA realiza lo siguiente:

- Mantiene mapas precisos de riesgo elevado para las áreas propensas a las inundaciones en la región oriental de Kansas a fin de evaluar y calificar en forma exacta el riesgo de inundaciones en comparación con las tierras más elevadas.
- Mantiene buenas relaciones laborales con los distritos de diques y con las agencias gubernamentales locales para estar al tanto de cualquier desarrollo a lo largo del extenso sistema de diques que protege las zonas bajas a lo largo del río Misuri y sus afluentes. En la parte occidental de la región correspondiente a la oficina regional de Topeka, la RMA ha colaborado en una enorme medida con los distritos de irrigación, las agencias gubernamentales estatales y otros grupos para obtener un mejor entendimiento de los problemas que enfrenta la producción por irrigación.
- La oficina regional de Topeka colaboró con la Oficina de Agua de Kansas y con otras partes interesadas para desarrollar una Práctica de irrigación limitada, que se ofrece en un área selecta de la región noroccidental de Kansas. Consultar el Memorando informativo que se adjunta, del 15 de abril de 2015:

Texas y Oklahoma

- Algunas áreas de Texas y Oklahoma han estado en una situación de sequía grave a extrema desde el año de cultivo 2011, y muchas de estas áreas han pasado de condiciones de sequía a condiciones de exceso de humedad al año de cultivo 2015.
- Muchos distritos con agua superficial tienen suministros de agua limitados o nulos. Muchos productores han tenido que recurrir a los pagos de indemnización por prevención de plantación a través del Programa Federal de Seguros para Cultivos.
- Los niveles de agua subterránea en los acuíferos de estos estados siguen disminuyendo de un año al otro, y las tasas de disminución aumentaron durante las condiciones recientes de sequía. Algunos distritos hídricos están diseñando planes de conservación y reduciendo las asignaciones de agua a los productores por medio de planes de irrigación por distrito.

Para hacer frente a estos riesgos en Texas y Oklahoma, la RMA realiza lo siguiente:

Proporciona a los agricultores y ganaderos información sobre la irrigación a través de enlaces al sitio web de la RMA para ayudarlos a gestionar los riesgos.
Región de las llanuras

- **IRRSC, Universidad Estatal de Nuevo México.** Un modelo computarizado permite que el usuario evalúe las prácticas de irrigación en curso y que programe irrigaciones futuras sobre la base de eventos recientes en relación con el campo que se esté considerando. Se pueden estimar el rendimiento esperado, el consumo de agua y el desarrollo de las plantas.

 http://aces.nmsu.edu/aes/irrigation/irrigation-scheduling-in.html

- **TexasET, Extensión de Texas A&M:** Programa de tecnología de irrigación que contiene información meteorológica, evapotranspiración y recomendaciones sobre el riesgo de los cultivos del Programa de Agricultura del sistema de la Universidad Texas A&M.

 http://texaset.tamu.edu/

Las oficinas regionales de la RMA de Topeka y de la Ciudad de Oklahoma ubicadas en la región del Centro Climático de las Llanuras Meridionales continuarán monitoreando los eventos meteorológicos adversos, como las sequías, las inundaciones, el exceso de humedad o la falta de suministro de agua para irrigación. Las oficinas regionales de la RMA responderán a las consultas de los proveedores de seguros aprobados y de los productores durante estos eventos, y continuarán brindando estimaciones de responsabilidades, pérdidas y el posible efecto que los desastres naturales pueden tener sobre el programa federal de seguros para cultivos para la sede central de la RMA en Washington, D.C., según sea necesario.

5.6 Servicio de Inspección Sanitaria Animal y Vegetal

El Servicio de Inspección Sanitaria Animal y Vegetal (APHIS) es responsable de proteger y promover la salud agrícola y forestal de EE. UU., regular ciertos organismos diseñados genéticamente, hacer cumplir la Ley de Bienestar Animal y realizar actividades de gestión de la vida silvestre. El APHIS trabaja para defender los recursos animales y vegetales de los EE. UU. de las plagas y enfermedades agrícolas y forestales. Cuando se detecta una plaga o enfermedad, el APHIS colabora con las regiones afectadas para administrar y erradicar el brote. En su Plan estratégico para 2015, APHIS enumera siete objetivos:

1. Prevenir la entrada y la propagación de plagas y enfermedades agrícolas.
2. Garantizar el trato humano y el cuidado de los animales vulnerables cubiertos.
3. Proteger los bosques, los paisajes urbanos y otros recursos naturales, además de las tierras de cultivo privadas, de las plagas y enfermedades dañinas.
4. Garantizar la seguridad, la pureza y la eficacia de los productos biológicos de uso veterinario, y proteger la salud de las plantas optimizando el control sobre los organismos diseñados genéticamente.
5. Garantizar el comercio seguro de productos agrícolas, a fin de crear oportunidades de exportación para los productores de los EE. UU.
6. Proteger la salud de los recursos agrícolas de EE. UU., lo que incluye problemas e incidencia de enfermedades zoonóticas, por medio de la implementación de programas de vigilancia, de preparación y respuesta, y de control.
7. Crear un APHIS para el siglo XXI que tenga un alto rendimiento; que sea eficiente y adaptable; y que proteja los derechos civiles.

El APHIS trabaja para lograr estos objetivos por medio de las acciones de varios programas con misiones para distintas áreas y de las unidades de apoyo. El texto que se presenta a continuación describe los programas del APHIS y sus responsabilidades respectivas, además de sus vulnerabilidades anticipadas relacionadas con un clima cambiante y las medidas implementadas para minimizar los riesgos de estas vulnerabilidades. Por tratarse de una agencia con preocupaciones normativas a escala nacional, los programas del APHIS generalmente tienen alcance y aplicación nacional.

Cuidado de Animales (AC)

La misión del programa de AC es proteger el bienestar animal haciendo cumplir la Ley de Bienestar Animal y la Ley de Protección de Caballos. El AC también protege la seguridad y el bienestar de los propietarios de mascotas y de sus mascotas durante desastres, apoyando a la Agencia Federal para el Manejo de Emergencias (FEMA).

El rol de apoyo del AC en estos esfuerzos puede ser vulnerable al cambio climático. Un aumento de la frecuencia y la gravedad de las tormentas a medida que el clima se calienta podría aumentar la necesidad de evacuaciones y otras actividades de respuesta a emergencias. Anticipándose al aumento de las actividades de respuesta a emergencias, AC organiza y participa en forma proactiva en la planificación de la respuesta ante emergencias junto con la FEMA, la Función de Apoyo en Emergencias (ESF) n.° 1120, y otros socios de respuesta ante emergencias a fin de fortalecer la capacidad del país para responder a los desastres naturales.

Servicios de Regulación de la Biotecnología (BRS)

La agencia de BRS implementa las regulaciones de APHIS para los organismos genéticamente modificados (GM) que pueden presentar un riesgo para la salud de las plantas. APHIS coordina estas responsabilidades junto con la Agencia de Protección Ambiental y la Administración de Alimentos y Medicamentos, como parte del Marco Federal Coordinado para la Regulación de la Biotecnología.

Aunque las acciones de la BRS no son directamente «vulnerables» al cambio climático, es posible que presenten modificaciones geográficas si el cambio climático afecta la distribución de los cultivos agrícolas y otras plantas que la BRS regula. Por ejemplo, si se modifican las áreas de cultivo de plantas GM, la BRS tendría que realizar nuevas inspecciones de campo en las nuevas ubicaciones.

La BRS cuenta con un plan y una práctica flexibles de contratación de personal: no todo su personal se encuentra ubicado en la sede central; los empleados se encuentran ubicados de manera tal que puedan proporcionar servicios de inspección móvil a cualquier zona en la que se realicen pruebas de campo de cultivos GM. Además, la BRS recibe informes anuales de quienes tienen permisos para realizar pruebas de campo. La BRS usa esta información para planificar las inspecciones a lo largo del ciclo de vida de las pruebas de campo. La flexibilidad y el uso regular de nueva información inherente en la planificación y las prácticas de la BRS ayudarán a minimizar los riesgos del cambio climático.

Protección y Cuarentena de Plantas (PPQ)

La PPQ es responsable por la protección y el fomento de la salud agrícola de los EE. UU. La PPQ trabaja constantemente para defender los recursos agrícolas y forestales de los EE. UU. de las plagas y enfermedades. Cuando se detecta una plaga o enfermedad de una planta (una que no existiera previamente en los EE. UU. o de existir, que estuviera bajo control oficial), la PPQ colabora con las regiones afectadas para manejar y erradicar el brote. La PPQ tiene tres objetivos estratégicos:

1. Fortalecer el sistema de exclusión de plagas de la PPQ.
2. Optimizar los programas de manejo y erradicación de plagas nacionales de la PPQ.
3. Aumentar la seguridad del comercio agrícola para expandir las oportunidades económicas en el mercado global.

Frente a un clima cada vez más variable y unas condiciones meteorológicas cada vez más erráticas, la PPQ continuará teniendo un rol central en las actividades de respuesta a los riesgos y manejo de las vulnerabilidades. A este fin, la PPQ opera a nivel nacional e internacional, con un énfasis regional según sea necesario, para abordar y evitar las incursiones de plagas en plantas.

La PPQ tiene la tarea de evaluar el riesgo y predecir dónde se podría introducir, establecer y propagar una plaga de plantas invasora; estas evaluaciones generalmente están basadas en las condiciones climáticas y la disponibilidad de plantas anfitrionas. A medida que el clima cambia, la distribución de las plantas anfitrionas y las condiciones del paisaje se desvían de lo que se considera «normal». Las evaluaciones de la PPQ se basan en los datos disponibles, que generalmente reflejan condiciones pasadas. A medida que el clima cambia, la relevancia real de estos datos puede disminuir nuestra capacidad de predecir y entender los riesgos de manera exacta.

Algunos de los desafíos en la predicción de los riesgos futuros en condiciones de cambio climático implican trasladarse del análisis de las respuestas medias (p. ej., un aumento de 2 a 3 grados en la temperatura, en promedio) y enfocarse, en su lugar, en intentar comprender cómo la capacidad de invasión y la posibilidad de establecimiento de las plagas cambian como resultado de una mayor variabilidad meteorológica y de eventos más extremos. Por ejemplo, varios años de un clima más cálido de lo normal pueden promover el establecimiento de poblaciones invasoras de plagas y, como resultado estas pueden propagarse a nuevas áreas. Al llegar a las nuevas áreas, si las poblaciones de plagas pueden encontrar microclimas seguros y más cálidos para sobrevivir al invierno, pueden volverse más prevalentes en forma temprana en la temporada siguiente. Anticiparse a los cambios del comercio mundial como respuesta al cambio climático es otro desafío, como también lo es el riesgo subsiguiente de nuevas plagas y enfermedades en cultivos asociados con estas.

La PPQ se asocia con otras agencias, universidades y Centros Climáticos a fin de aumentar su capacidad para obtener y analizar datos y para implementar modelos que sirvan para informar las políticas y los programas contra las plagas específicas al cambio climático. La PPQ está aumentando su capacidad para elaborar modelos de riesgo de plagas a nivel regional, nacional y mundial con nuevas plataformas. Estas plataformas se diseñan para proyectar posibles escenarios de cambio climático en el paisaje a fin de modelar los cambios geográficos en la adecuación climática y la disponibilidad de plantas anfitrionas. La PPQ también está desarrollando modelos fenológicos que se pueden usar para analizar la forma en que el cambio climático y la mayor variabilidad meteorológica pueden afectar la secuencia temporal del desarrollo de plagas y la consiguiente respuesta de sus poblaciones. La capacidad de elaborar proyecciones sólidas de dichos cambios introducirá las siguientes mejoras: 1) mejorará la eficacia de los programas de vigilancia de la PPQ para la detección temprana realizados en cooperación con los distintos estados y territorios, y 2) mejorará el rigor científico y la utilidad de los análisis de riesgos que se utilizan para elaborar las políticas normativas relativas a las plagas en plantas.

Servicios Veterinarios (VS)

La agencia de VS trabaja de diversas maneras con el objetivo de mejorar la salud, la calidad y la comerciabilidad de los animales (incluidas varias especies silvestres), los productos de origen animal y los productos biológicos de uso veterinario del país. La VS es responsable de la regulación de la importación y el traslado interestatal de animales y de sus productos para prevenir la entrada y la propagación de enfermedades de animales de origen extranjero. Si se detecta una enfermedad animal de origen extranjero en los Estados Unidos, la VS es responsable por responder al brote junto con los estados, los territorios, las tribus y los productores. La VS también regula la emisión de licencias de productos biológicos de uso veterinario, como las vacunas.

La mayoría de los riesgos que se describen para las industrias de ganado en la región de las llanuras meridionales en la Sección 2.2 (arriba) son relevantes para los programas de la VS; los riesgos pueden afectar la salud de los animales por medio de la reducción de la resiliencia y de la salud general de los animales, además de aumentar el posible riesgo de enfermedades infecciosas endémicas y emergentes.

Vulnerabilidades

Cambios en la salud y en la producción de animales
Los riesgos identificados para la región de las llanuras meridionales, como las sequías, los eventos meteorológicos extremos, la disminución de los suministros de agua y los cambios en la producción agrícola y las tierras de pastoreo, pueden afectar la salud y la resiliencia de los animales y hacerlos más vulnerables a las enfermedades, lo que causaría una reducción de la productividad. Por ejemplo, la reciente sequía en Texas redujo la cantidad de alimentos, agua y forraje para el ganado, lo cual redujo, a su vez, la salud de los animales, como así también la cantidad de ganado de carne producido.

La región de las llanuras meridionales aloja áreas de acuicultura costeras y continentales. Las poblaciones de peces marinos y de agua dulce destinados al consumo alimenticio ya han sufrido una importante reducción debido al calentamiento del agua y los efectos consiguientes, entre los que se incluyen la acidificación, el agotamiento del oxígeno, la floración de algas y el aumento de las cargas de patógenos. Estos efectos exacerban los efectos de la sobreexplotación, que ha agotado muchas poblaciones de peces silvestres y ha colocado una mayor presión en la industria de la acuicultura debido a la necesidad de una mayor producción y mitigación de los efectos en la salud. Las sequías, los extremos meteorológicos y el aumento de la escorrentía agrícola afectan la producción acuícola y la salud de estas especies.

Cambios en los patrones de enfermedades endémicas y exposición a enfermedades infecciosas emergentes

A lo largo de la costa sur del golfo, la posibilidad de temporadas de huracanes y eventos de precipitaciones más extremas podría tener efectos directos sobre la vegetación y podría crear nichos ecológicos para las enfermedades infecciosas emergentes de animales (p. ej., de La Rocque et al. 2008).

Los cambios en el medio ambiente pueden facilitar la dispersión y la redistribución de vectores artrópodos, junto con la capacidad de estos vectores de transmitir patógenos de relevancia económica, y pueden permitirles propagarse desde las áreas en las que se encuentran a nuevas áreas. La región de las llanuras meridionales aloja vectores competentes (especies que podrían funcionar como vectores) para muchas enfermedades transmitidas por vectores esporádicas o ausentes actualmente, y es vulnerable al establecimiento de nuevos vectores, particularmente a la vista de los riesgos del cambio climático.

Muchas especies acuícolas tienen enfermedades que prosperan en ciertos rangos de temperatura. Los cambios en las temperaturas promedio podrían aumentar la carga de las enfermedades, y los extremos meteorológicos pueden aumentar la posibilidad de aparición de las enfermedades.

Cambios en la relación entre la fauna silvestre y el ganado

El aumento de la infestación de plagas, los incendios y la expansión de la interfaz de zona silvestre-zona urbana podrían alterar la distribución, los movimientos y los patrones de alimentación de los animales, y aumentar de esta forma el contacto y la posibilidad de contagio de enfermedades a poblaciones de animales de granja. La idoneidad del hábitat podría mejorar para especies como el ciervo de cola blanca y el jabalí, lo cual podría aumentar el contacto y la consiguiente transmisión de enfermedades entre estas especies silvestres y el ganado. Los cambios en el hábitat también podrían aumentar la competencia por los recursos escasos.

Las siguientes son algunas de las medidas actuales de la VS en la región de las llanuras meridionales para abordar las vulnerabilidades:

Estudios del Sistema Nacional de Control de la Salud Animal (NAHMS): el NAHMS realiza estudios en forma periódica sobre las industrias de ganado en los EE. UU.; estos estudios les proporcionan a las partes interesadas del sector público y privado información valiosa sobre la ocurrencia de enfermedades y la exposición a los agentes patógenos, las prácticas de gestión, la productividad, la falta de conocimientos en ciertas áreas y otros temas importantes. Estos datos cubren muchas necesidades de información, pueden ayudar a describir la industria cambiante y pueden ayudar a los usuarios a identificar acciones de mitigación a realizar.

Programas del USDA
Página | 67
Región de las llanuras

- **Vigilancia activa**: la agencia de VS realiza tareas de vigilancia sobre las enfermedades reguladas, como la tuberculosis y la brucelosis; la observación de los cambios en la distribución o el comportamiento de estas enfermedades puede ayudar con la identificación para realizar mitigaciones, además de alertar a los encargados de la toma de decisiones acerca de los nuevos factores relacionados con la emergencia de enfermedades.

- **Vigilancia pasiva**: la agencia de VS realiza tareas de vigilancia pasiva, entre las cuales se incluyen varios proyectos en la región de las llanuras meridionales que monitorean los datos de salud de los animales para detectar cambios en esta. La información se puede usar para identificar las tendencias de salud (incluidas aquellas tendencias provocadas por el cambio climático) que pueden conducir a formas útiles de mitigación.

- La VS participa en un proyecto, en colaboración con la Comisión de Salud Animal de Texas y con la Universidad Texas A&M, dedicado a la conducción del control de garrapatas en mercados de ganado; los datos se usan para mejorar los datos disponibles para el desarrollo de mapas de distribución de las distintas especies de garrapatas, particularmente de las garrapatas que causan fiebre en el ganado (*Rhipicephalus annulatus* y *R. microplus*) y que, según las proyecciones, se podrían extender hacia el norte, desde México y Texas.

- La VS colabora con el programa de Servicios de Fauna Silvestre conducido por el APHIS para investigar y mitigar el riesgo de enfermedades y de daño a los recursos agrícolas y naturales provenientes del jabalí, lo cual incluye estudios en las llanuras meridionales y en regiones adyacentes. La región de las llanuras meridionales aloja una gran población de jabalíes. La información que se obtenga de este programa ayudará a identificar y cuantificar los riesgos de enfermedades provenientes del jabalí para el ganado doméstico, como así también los riesgos asociados con los cambios en la distribución de los jabalíes (incluidos los que se deben al clima).

- La VS participa en investigaciones y medidas de respuesta a las interacciones entre la fauna silvestre y el ganado y los riesgos a la salud por enfermedades como la tuberculosis o la brucelosis en Estados Unidos, que se pueden contagiar a través del contacto del ganado con cérvidos criados en libertad, incluidos el alce, el ciervo de cola blanca y otras especies silvestres.

Desarrollo de Políticas y Programas (PPD)

La agencia de PPD realiza análisis económicos, ambientales y otros tipos de análisis para apoyar las acciones de los programas del APHIS. Los análisis de la PPD serían más sólidos con el tiempo si pudieran incorporar mejor los efectos económicos y ambientales del cambio climático a los sistemas agrícolas y ecosistemas relevantes. Las proyecciones sólidas del cambio climático y su efecto en la distribución de las áreas de producción de diversos productos básicos, al igual que las necesidades anticipadas de movimientos de productos básicos a escala internacional y nacional, pueden servir como fuente de información para análisis económicos. Estas proyecciones, junto con la información sobre los polinizadores, el agua y otros recursos, además de los efectos en comunidades de bajos recursos, minoritarias y tribales, proporcionarán una información más completa a nuestros análisis ambientales.

La PPD está incorporando el cambio climático a muchos de sus documentos de cumplimiento ambiental (p. ej., la Ley Nacional Sobre Política Ambiental, NEPA) y está conduciendo un esfuerzo líder a nivel de toda la agencia para desarrollar una guía para abordar el cambio climático en los documentos de la NEPA.

Servicios de Fauna Silvestre (WS)

La misión de la agencia WS es brindar liderazgo y conocimiento a nivel federal para resolver los conflictos que surgen en torno a la fauna silvestre a fin de lograr la coexistencia de las personas y la fauna silvestre. La WS realiza actividades de aplicación de programas, investigación y otras actividades por medio de sus oficinas regionales y estatales, el Centro Nacional de Investigación de la Fauna Silvestre (NWRC) y sus estaciones locales, y sus programas nacionales. Como el trabajo de la WS depende ampliamente de las distribuciones de la fauna silvestre, las cuales se modificarán, según las proyecciones, a medida que el clima cambie, gran parte de este trabajo se irá modificando también. Los siguientes ejemplos reflejan algunos de los cambios que podrían afectar las llanuras meridionales:
Gestión de las enfermedades propagadas por la fauna silvestre

El cambio climático probablemente tenga efectos drásticos en la distribución de las enfermedades agrícolas de interés y en las enfermedades zoonóticas, y ambas se pueden contagiar por contacto con la fauna silvestre. Se puede anticipar que algunas áreas tendrán una disminución de los riesgos de enfermedades endémicas, mientras que otras verán surgir nuevas enfermedades en áreas en las que anteriormente no estaban documentadas. Debido a la sensibilidad de los vectores de insectos a los cambios en las variables meteorológicas, es posible que los cambios iniciales en la distribución de enfermedades provocados por el cambio climático ocurran en el caso de las enfermedades transmitidas por vectores. El NWRC de la WS está realizando tareas de vigilancia e investigación sobre las enfermedades y los vectores para recopilar datos de referencia relacionados con la distribución, que serán usados en modelos del cambio climático y estudios futuros. El NWRC de la WS también mantiene registros de tejidos con muestras tomadas de la fauna silvestre que se encuentran disponibles para una investigación retrospectiva sobre las enfermedades a fin de identificar los cambios en la distribución y la prevalencia de los patógenos.

Gestión de la fauna silvestre para la seguridad en la aviación

A medida que cambia el clima, también se modifican las zonas de reproducción e hibernación de la fauna silvestre, especialmente de las aves, lo cual afecta la seguridad en la aviación. Los aeropuertos y las instalaciones militares deben prepararse para lidiar con los nuevos desafíos asociados con los cambios en las zonas ocupadas por las aves. Además, es posible que cambien los patrones de migración de varias especies. Como ejemplo, la WS ha desarrollado modelos de migración para el águila pescadora en relación con los movimientos de aeronaves militares. Estos modelos se volverán obsoletos rápidamente con el cambio climático, ya que se espera que los patrones de migración de las especies se vean ampliamente influenciados por el cambio climático. Una gestión adecuada del hábitat es crucial para manejar con éxito los riesgos de la fauna silvestre para la aviación. Es posible que la distribución de las especies de plantas que crecen en las zonas de los aeropuertos y las instalaciones militares cambie en el futuro. Por esta razón, también es posible que las estrategias de gestión del hábitat deban adaptarse a un clima en constante cambio. El NWRC de la WS está recopilando datos sobre la distribución de las especies y los hábitats, a fin de poder detectar los cambios en las zonas de las especies y en sus patrones de migración y movimientos para ajustar sus estrategias de gestión del hábitat de manera apropiada. El NWRC también está investigando posibles coberturas alternativas de la tierra, que podrían usarse en aeropuertos e instalaciones militares en todos los Estados Unidos a medida que las condiciones cambian.

Gestión de la fauna silvestre para proteger la agricultura

La WS realiza investigaciones y gestión de la fauna silvestre y de las especies invasoras, como los jabalíes, que pueden tener un efecto significativo en productos básicos agrícolas. A medida que el clima cambie, la distribución de estas especies y los cultivos agrícolas que estas afectan también cambiarán. La información sobre las densidades poblacionales y la distribución de las especies investigadas es importante para comprender la forma en que el cambio climático afectará la producción de estos productos básicos agrícolas.

Gestión de los depredadores

A medida que el clima cambie, también cambiarán los paisajes y los hábitats, lo que traerá un cambio en la distribución y la abundancia de las presas. Los cambios en la vegetación nativa y, en consecuencia, del forraje, alterarán los patrones de alimentación de la fauna silvestre nativa, lo cual alterará también la distribución de depredadores tales como pumas, osos negros y coyotes. Estos cambios influirán en la distribución y la abundancia de dichos depredadores y alterarán la capacidad predictiva de los modelos en relación con los patrones espaciales, el comportamiento, la abundancia y el uso del hábitat de los depredadores. Es posible que los resultados de los modelos con información climática sean necesarios para diseñar las estrategias de gestión de los depredadores a fin de que se adapten al cambio climático. Los investigadores del NWRC de la WS están recopilando datos sobre los cambios en la distribución, el comportamiento, la abundancia y el uso del hábitat de las especies depredadoras de todo el país que ya se están viendo afectadas por el cambio climático (p. ej., los osos polares), y usarán estos estudios como base
Región de las llanuras

para incorporar el cambio climático a los estudios de las especies locales. El NWRC también está incorporando los modelos de cambio climático a las proyecciones acerca de la futura disponibilidad de hábitats para los depredadores.
Región de las llanuras

Referencias

Referencias

Página | 71
Región de las llanuras

Finch, DM. (2012). Climate Change in Grasslands, Shrublands, and Deserts of the Interior American West: A Review and Needs Assessment (pp. 139). Estación de Investigación de las Montañas Rocosas: Departamento de Agricultura de EE. UU., Servicio Forestal.

Melillo, JM, Richmond, TC, y Yohe, GW (Eds.). (2014). Climate Change Impacts in the United States: The Third National Climate Assessment: Programa de los Estados Unidos de investigaciones sobre el cambio mundial.

Referencias
Página | 72
Región de las llanuras

Región de las llanuras

Simpson, H, Taylor, E, Li, Y, y Barber, B. (2013). Texas Statewide Assessment of Forest Ecosystem Services A comprehensive analysis of regulating and cultural services provided by Texas’ forests. Estación de la universidad, Servicio Forestal de Texas A&M, TX.